Brain norepinephrine and metabolites after treadmill training and wheel running in rats

Andrea L. Dunn, Thomas G. Reigle, Shawn Youngstedt, Robert B. Armstrong, Rod K. Dishman

Research output: Contribution to journalArticle

131 Scopus citations

Abstract

Regional changes in concentrations of brain norepinephrine [NE] and its metabolites after chronic exercise have not been described for exercise protocols not confounded by other stressors. We examined levels of [NE], 3- methoxy-4-hydroxyphenylglycol [MHPG], and 3,4-dihydroxyphenylglycol [DHPG] in the frontal cortex, hippocampus, pons-medulla, and spinal cord after 8 wk of exercise. Male Sprague-Dawley rats (N = 36) were randomly assigned to three conditions: 1) 24-h access to activity wheel running (WR), 2) treadmill running (TR) at 0° incline for 1 h · d-1 at 25-30 m · min-1, or 3) a sedentary control group (C). Levels (nmol · g-1) of [NE], [MHPG], and [DHPG] were assayed by high performance liquid chromatography with electrochemical detection. Planned contrasts (P < 0.05) indicated that exercise training increased succinate dehydrogenase activity (mmol cytochrome C reduced · min-1 · g-1 wet weight) in soleus muscle for TR compared with WR or C. [NE] was higher in the pons-medulla and spinal cord for both TR and WR compared with C. [DHPG] was higher in the pons-medulla for TR compared with C. and [MHPG] was higher in the frontal cortex and in the hippocampus for TR compared with C. Our results suggest that treadmill exercise training is accompanied by brain noradrenergic adaptations consistent with increased metabolism of NE in areas containing NE cell bodies and ascending terminals, whereas treadmill running and wheel running are accompanied by increases in levels of NE in the areas of NE cell bodies and the spinal cord, independently of an exercise training effect.

Original languageEnglish (US)
Pages (from-to)204-209
Number of pages6
JournalMedicine and Science in Sports and Exercise
Volume28
Issue number2
DOIs
Publication statusPublished - 1996
Externally publishedYes

    Fingerprint

Keywords

  • DHPG
  • EXERCISE
  • HIGH PERFORMANCE LIQUID CHROMATOGRAPHY
  • MHPG

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Physical Therapy, Sports Therapy and Rehabilitation
  • Orthopedics and Sports Medicine

Cite this