Brain dynamics based automated epileptic seizure detection

V. Venkataraman, I. Vlachos, A. Faith, B. Krishnan, Konstantinos Tsakalis, D. Treiman, L. Iasemidis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

We developed and tested a seizure detection algorithm based on two measures of nonlinear and linear dynamics, that is, the adaptive short-term maximum Lyapunov exponent (ASTLmax) and the adaptive Teager energy (ATE). The algorithm was tested on long-term (0.5-11.7 days) continuous EEG recordings from five patients (3 with intracranial and 2 with scalp EEG) with a total of 56 seizures, producing a mean sensitivity of 91% and mean specificity of 0.14 false positives per hour. The developed seizure detection algorithm is data-adaptive, training-free, and patient-independent.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages946-949
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
CountryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • Medicine(all)

Fingerprint Dive into the research topics of 'Brain dynamics based automated epileptic seizure detection'. Together they form a unique fingerprint.

Cite this