Bite force and feeding kinematics in the eastern North Pacific kyphosidae

Clinton Joseph Moran, Lara Ferry

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

Some fishes that feed on attached food items possess an intramandibular joint (IMJ), which is thought to increase maximum gape and facilitate contact between the tooth-bearing surface and the substrate. However, the mechanical consequences of using an IMJ to remove attached food items from the substrate are still poorly understood. We examined the most prominent eastern North Pacific kyphosid, the scraper: Girella nigricans and two other kyphosids, Medialuna californiensis and Hermosilla azurea, which occupy similar habitats. Of the three species, G. nigricans had the highest theoretical bite force per unit length. We examined the feeding mechanics of G. nigricans in two different feeding scenarios: a scraping behavior elicited on a block of brine shrimp gelatin and a picking behavior elicited on Ulva sp. We measured cranial elevation, lower jaw rotation, premaxillary protrusion, premaxillary rotation, gape maximum, and intramandibular rotation. Ulva treatments produced significantly greater cranial rotation, when compared to gelatin treatments. Gelatin treatments were associated with greater lower jaw rotation and larger gape. Premaxillary rotation and premaxillary protrusion did not differ between treatments. Intramandibular rotation occurred only when G. nigricans physically contacted the gelatin, suggesting the IMJ is a passive joint with no associated musculature. We also noted that G. nigricans do not appear to use suction to draw food into the mouth. The lack of suction and the presence of the IMJ suggest that the jaws of G. nigricans are specialized for maximizing jaw force when scraping.

Original languageEnglish (US)
Pages (from-to)189-197
Number of pages9
JournalJournal of Experimental Zoology Part A: Ecological Genetics and Physiology
Volume321
Issue number4
DOIs
StatePublished - Apr 2014

    Fingerprint

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Animal Science and Zoology
  • Molecular Biology
  • Genetics

Cite this