Bite force and feeding kinematics in the eastern North Pacific kyphosidae

Clinton Joseph Moran, Lara Ferry

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Some fishes that feed on attached food items possess an intramandibular joint (IMJ), which is thought to increase maximum gape and facilitate contact between the tooth-bearing surface and the substrate. However, the mechanical consequences of using an IMJ to remove attached food items from the substrate are still poorly understood. We examined the most prominent eastern North Pacific kyphosid, the scraper: Girella nigricans and two other kyphosids, Medialuna californiensis and Hermosilla azurea, which occupy similar habitats. Of the three species, G. nigricans had the highest theoretical bite force per unit length. We examined the feeding mechanics of G. nigricans in two different feeding scenarios: a scraping behavior elicited on a block of brine shrimp gelatin and a picking behavior elicited on Ulva sp. We measured cranial elevation, lower jaw rotation, premaxillary protrusion, premaxillary rotation, gape maximum, and intramandibular rotation. Ulva treatments produced significantly greater cranial rotation, when compared to gelatin treatments. Gelatin treatments were associated with greater lower jaw rotation and larger gape. Premaxillary rotation and premaxillary protrusion did not differ between treatments. Intramandibular rotation occurred only when G. nigricans physically contacted the gelatin, suggesting the IMJ is a passive joint with no associated musculature. We also noted that G. nigricans do not appear to use suction to draw food into the mouth. The lack of suction and the presence of the IMJ suggest that the jaws of G. nigricans are specialized for maximizing jaw force when scraping.

Original languageEnglish (US)
Pages (from-to)189-197
Number of pages9
JournalJournal of Experimental Zoology Part A: Ecological Genetics and Physiology
Volume321
Issue number4
DOIs
StatePublished - 2014

Fingerprint

Kyphosidae
Bite Force
Enteral Nutrition
kinematics
Biomechanical Phenomena
joints (animal)
gelatin
jaws
Gelatin
Jaw
Joints
Ulva
Suction
Girella
Food
suction
food
Artemia
mechanics
fish feeds

ASJC Scopus subject areas

  • Animal Science and Zoology
  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Physiology
  • Molecular Biology
  • Medicine(all)

Cite this

Bite force and feeding kinematics in the eastern North Pacific kyphosidae. / Moran, Clinton Joseph; Ferry, Lara.

In: Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, Vol. 321, No. 4, 2014, p. 189-197.

Research output: Contribution to journalArticle

@article{75ca4ad5b1f24cfc90c4a2beb7e40fa0,
title = "Bite force and feeding kinematics in the eastern North Pacific kyphosidae",
abstract = "Some fishes that feed on attached food items possess an intramandibular joint (IMJ), which is thought to increase maximum gape and facilitate contact between the tooth-bearing surface and the substrate. However, the mechanical consequences of using an IMJ to remove attached food items from the substrate are still poorly understood. We examined the most prominent eastern North Pacific kyphosid, the scraper: Girella nigricans and two other kyphosids, Medialuna californiensis and Hermosilla azurea, which occupy similar habitats. Of the three species, G. nigricans had the highest theoretical bite force per unit length. We examined the feeding mechanics of G. nigricans in two different feeding scenarios: a scraping behavior elicited on a block of brine shrimp gelatin and a picking behavior elicited on Ulva sp. We measured cranial elevation, lower jaw rotation, premaxillary protrusion, premaxillary rotation, gape maximum, and intramandibular rotation. Ulva treatments produced significantly greater cranial rotation, when compared to gelatin treatments. Gelatin treatments were associated with greater lower jaw rotation and larger gape. Premaxillary rotation and premaxillary protrusion did not differ between treatments. Intramandibular rotation occurred only when G. nigricans physically contacted the gelatin, suggesting the IMJ is a passive joint with no associated musculature. We also noted that G. nigricans do not appear to use suction to draw food into the mouth. The lack of suction and the presence of the IMJ suggest that the jaws of G. nigricans are specialized for maximizing jaw force when scraping.",
author = "Moran, {Clinton Joseph} and Lara Ferry",
year = "2014",
doi = "10.1002/jez.1850",
language = "English (US)",
volume = "321",
pages = "189--197",
journal = "Journal of Experimental Zoology Part A: Ecological Genetics and Physiology",
issn = "1932-5223",
publisher = "John Wiley and Sons Inc.",
number = "4",

}

TY - JOUR

T1 - Bite force and feeding kinematics in the eastern North Pacific kyphosidae

AU - Moran, Clinton Joseph

AU - Ferry, Lara

PY - 2014

Y1 - 2014

N2 - Some fishes that feed on attached food items possess an intramandibular joint (IMJ), which is thought to increase maximum gape and facilitate contact between the tooth-bearing surface and the substrate. However, the mechanical consequences of using an IMJ to remove attached food items from the substrate are still poorly understood. We examined the most prominent eastern North Pacific kyphosid, the scraper: Girella nigricans and two other kyphosids, Medialuna californiensis and Hermosilla azurea, which occupy similar habitats. Of the three species, G. nigricans had the highest theoretical bite force per unit length. We examined the feeding mechanics of G. nigricans in two different feeding scenarios: a scraping behavior elicited on a block of brine shrimp gelatin and a picking behavior elicited on Ulva sp. We measured cranial elevation, lower jaw rotation, premaxillary protrusion, premaxillary rotation, gape maximum, and intramandibular rotation. Ulva treatments produced significantly greater cranial rotation, when compared to gelatin treatments. Gelatin treatments were associated with greater lower jaw rotation and larger gape. Premaxillary rotation and premaxillary protrusion did not differ between treatments. Intramandibular rotation occurred only when G. nigricans physically contacted the gelatin, suggesting the IMJ is a passive joint with no associated musculature. We also noted that G. nigricans do not appear to use suction to draw food into the mouth. The lack of suction and the presence of the IMJ suggest that the jaws of G. nigricans are specialized for maximizing jaw force when scraping.

AB - Some fishes that feed on attached food items possess an intramandibular joint (IMJ), which is thought to increase maximum gape and facilitate contact between the tooth-bearing surface and the substrate. However, the mechanical consequences of using an IMJ to remove attached food items from the substrate are still poorly understood. We examined the most prominent eastern North Pacific kyphosid, the scraper: Girella nigricans and two other kyphosids, Medialuna californiensis and Hermosilla azurea, which occupy similar habitats. Of the three species, G. nigricans had the highest theoretical bite force per unit length. We examined the feeding mechanics of G. nigricans in two different feeding scenarios: a scraping behavior elicited on a block of brine shrimp gelatin and a picking behavior elicited on Ulva sp. We measured cranial elevation, lower jaw rotation, premaxillary protrusion, premaxillary rotation, gape maximum, and intramandibular rotation. Ulva treatments produced significantly greater cranial rotation, when compared to gelatin treatments. Gelatin treatments were associated with greater lower jaw rotation and larger gape. Premaxillary rotation and premaxillary protrusion did not differ between treatments. Intramandibular rotation occurred only when G. nigricans physically contacted the gelatin, suggesting the IMJ is a passive joint with no associated musculature. We also noted that G. nigricans do not appear to use suction to draw food into the mouth. The lack of suction and the presence of the IMJ suggest that the jaws of G. nigricans are specialized for maximizing jaw force when scraping.

UR - http://www.scopus.com/inward/record.url?scp=84897960478&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84897960478&partnerID=8YFLogxK

U2 - 10.1002/jez.1850

DO - 10.1002/jez.1850

M3 - Article

VL - 321

SP - 189

EP - 197

JO - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

JF - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

SN - 1932-5223

IS - 4

ER -