Abstract

The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPRTM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBPAAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

Original languageEnglish (US)
Article numbere0136507
JournalPLoS One
Volume10
Issue number8
DOIs
StatePublished - Aug 21 2015

Fingerprint

Maltose-Binding Proteins
maltose
Human immunodeficiency virus 1
HIV-1
binding proteins
Fusion reactions
Vaccines
vaccines
Membranes
Proteins
proteins
crystallization
Crystallization
Neutralizing Antibodies
neutralizing antibodies
crystals
HIV Envelope Protein gp41
Virus Attachment
Virus Internalization
Crystals

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Biophysical characterization of a vaccine candidate against HIV-1 : The transmembrane and membrane proximal domains of HIV-1 gp41 as a maltose binding protein fusion. / Gong, Zhen; Martin-Garcia, Jose M.; Daskalova, Sasha M.; Craciunescu, Felicia M.; Song, Lusheng; Dörner, Katerina; Hansen, Debra; Yang, Jay How; LaBaer, Joshua; Hogue, Brenda; Leket-Mor, Tsafrir; Fromme, Petra.

In: PLoS One, Vol. 10, No. 8, e0136507, 21.08.2015.

Research output: Contribution to journalArticle

@article{fba57b05723846938e3fdf0e49bffac6,
title = "Biophysical characterization of a vaccine candidate against HIV-1: The transmembrane and membrane proximal domains of HIV-1 gp41 as a maltose binding protein fusion",
abstract = "The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPRTM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBPAAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.",
author = "Zhen Gong and Martin-Garcia, {Jose M.} and Daskalova, {Sasha M.} and Craciunescu, {Felicia M.} and Lusheng Song and Katerina D{\"o}rner and Debra Hansen and Yang, {Jay How} and Joshua LaBaer and Brenda Hogue and Tsafrir Leket-Mor and Petra Fromme",
year = "2015",
month = "8",
day = "21",
doi = "10.1371/journal.pone.0136507",
language = "English (US)",
volume = "10",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "8",

}

TY - JOUR

T1 - Biophysical characterization of a vaccine candidate against HIV-1

T2 - The transmembrane and membrane proximal domains of HIV-1 gp41 as a maltose binding protein fusion

AU - Gong, Zhen

AU - Martin-Garcia, Jose M.

AU - Daskalova, Sasha M.

AU - Craciunescu, Felicia M.

AU - Song, Lusheng

AU - Dörner, Katerina

AU - Hansen, Debra

AU - Yang, Jay How

AU - LaBaer, Joshua

AU - Hogue, Brenda

AU - Leket-Mor, Tsafrir

AU - Fromme, Petra

PY - 2015/8/21

Y1 - 2015/8/21

N2 - The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPRTM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBPAAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

AB - The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPRTM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBPAAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

UR - http://www.scopus.com/inward/record.url?scp=84942884607&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84942884607&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0136507

DO - 10.1371/journal.pone.0136507

M3 - Article

VL - 10

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 8

M1 - e0136507

ER -