Bioavailability of zinc in marine systems through time

Clint Scott, Noah J. Planavsky, Chris L. Dupont, Brian Kendall, Benjamin C. Gill, Leslie J. Robbins, Kathryn F. Husband, Gail L. Arnold, Boswell A. Wing, Simon W. Poulton, Andrey Bekker, Ariel D. Anbar, Kurt O. Konhauser, Timothy W. Lyons

Research output: Contribution to journalArticle

53 Scopus citations

Abstract

The redox state of the oceans strongly influences the concentration of dissolved trace metals in sea water. Changes in the redox state of the oceans are thought to have limited the availability of some trace metals in the past, particularly during the Proterozoic eon, 2,500 to 542 million years ago. Of these trace metals, zinc (Zn) is of particular importance to eukaryotic organisms, because it is essential for a wide range of basic cellular functions. It has been suggested that during the Proterozoic, marine environments were broadly euxinic - that is, anoxic and sulphidic - which would have resulted in low Zn availability. Low Zn bioavailability could therefore be responsible for an observed delay in eukaryote diversification. Here we present a compilation of Zn abundance data from black shales deposited under euxinic conditions from the Precambrian time to the present. We show that these values track first-order trends in seawater Zn availability. Contrary to previous estimates, we find that Zn concentrations during the Proterozoic were similar to modern concentrations, supporting recent studies that call for limited euxinia at this time. Instead, we propose that predominantly anoxic and iron-rich deep oceans, combined with large hydrothermal fluxes of Zn, maintained high levels of dissolved Zn throughout the oceans. We thus suggest that the protracted diversification of eukaryotic Zn-binding proteins was not a result of Znbiolimitation.

Original languageEnglish (US)
Pages (from-to)125-128
Number of pages4
JournalNature Geoscience
Volume6
Issue number2
DOIs
StatePublished - Feb 1 2013

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'Bioavailability of zinc in marine systems through time'. Together they form a unique fingerprint.

  • Cite this

    Scott, C., Planavsky, N. J., Dupont, C. L., Kendall, B., Gill, B. C., Robbins, L. J., Husband, K. F., Arnold, G. L., Wing, B. A., Poulton, S. W., Bekker, A., Anbar, A. D., Konhauser, K. O., & Lyons, T. W. (2013). Bioavailability of zinc in marine systems through time. Nature Geoscience, 6(2), 125-128. https://doi.org/10.1038/ngeo1679