BFORE: A CMB balloon payload to measure reionization, neutrino mass, and cosmic inflation

Sean Bryan, Peter Ade, J. Richard Bond, Francois Boulanger, Mark Devlin, Simon Doyle, Jeffrey Filippini, Laura Fissel, Christopher Groppi, Gilbert Holder, Johannes Hubmayr, Philip Mauskopf, Jeffrey McMahon, Johanna Nagy, C. Barth Netterfield, Michael Niemack, Giles Novak, Enzo Pascale, Giampaolo Pisano, John RuhlDouglas Scott, Juan Soler, Carole Tucker, Joaquin Vieira

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

BFORE is a high-altitude ultra-long-duration balloon mission to map the cosmic microwave background (CMB). During a 28-day mid-latitude ight launched from Wanaka, New Zealand, the instrument will map half the sky to improve measurements of the optical depth to reionization tau. This will break parameter degeneracies needed to detect neutrino mass. BFORE will also hunt for the gravitational wave B-mode signal, and map Galactic dust foregrounds. The mission will be the first near-space use of TES/mSQUID multichroic detectors (150/217 GHz and 280/353 GHz bands) with low-power readout electronics.

Original languageEnglish (US)
Title of host publicationMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
EditorsJonas Zmuidzinas, Jian-Rong Gao
PublisherSPIE
Volume10708
ISBN (Print)9781510619692
DOIs
StatePublished - Jan 1 2018
Externally publishedYes
EventMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018 - Austin, United States
Duration: Jun 12 2018Jun 15 2018

Other

OtherMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018
CountryUnited States
CityAustin
Period6/12/186/15/18

Keywords

  • Cosmic Microwave Background
  • Inflation
  • microwave SQUID
  • Neutrinos
  • Reionization
  • Scientific Ballooning
  • TES detectors

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'BFORE: A CMB balloon payload to measure reionization, neutrino mass, and cosmic inflation'. Together they form a unique fingerprint.

Cite this