Beyond user-specificity for EMG decoding using multiresolution muscle synergy analysis

Mark R. Ison, Panagiotis Artemiadis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Electromyographic (EMG) processing is a vital step towards converting noisy muscle activation signals into robust features that can be decoded and applied to applications such as prosthetics, exoskeletons, and human-machine interfaces. Current state of the art processing methods involve collecting a dense set of features which are sensitive to many of the intra-and intersubject variability ubiquitous in EMG signals. As a result, state of the art decoding methods have been unable to obtain subject independence. This paper presents a novel multiresolution muscle synergy (MRMS) feature extraction technique which represents a set of EMG signals in a sparse domain robust to the inherent variability of EMG signals. The robust features, which can be extracted in real time, are used to train a neural network and demonstrate a highly accurate and user-independent classifier. Leave-one-out validation testing achieves mean accuracy of 81:9±3:9% and area under the receiver operating characteristic curve (AUC), a measure of overall classifier performance over all possible thresholds, of 92:4±8:9%. The results show the ability of sparse MRMS features to achieve subject independence in decoders, providing opportunities for large-scale studies and more robust EMG-driven applications.

Original languageEnglish (US)
Title of host publicationAerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications;
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856123
DOIs
StatePublished - 2013
EventASME 2013 Dynamic Systems and Control Conference, DSCC 2013 - Palo Alto, CA, United States
Duration: Oct 21 2013Oct 23 2013

Publication series

NameASME 2013 Dynamic Systems and Control Conference, DSCC 2013
Volume1

Other

OtherASME 2013 Dynamic Systems and Control Conference, DSCC 2013
Country/TerritoryUnited States
CityPalo Alto, CA
Period10/21/1310/23/13

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Beyond user-specificity for EMG decoding using multiresolution muscle synergy analysis'. Together they form a unique fingerprint.

Cite this