Bentonite geochronology, marine geochemistry, and the Great Ordovician Biodiversification Event (GOBE)

Cara Thompson, Linda C. Kah, Ricardo Astini, Samuel A. Bowring, Robert Buchwaldt

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Attribution of Ordovician climate forcing to explosive volcanism and the potential global importance of volcanism in Ordovician biodiversification suggest the necessity of evaluating the relationships between K-bentonite deposition and increasingly high-resolution records of marine biogeochemical change. Globally, Ordovician strata preserve an extensive record of explosive volcanism - including the widely recognized Lower to Middle Ordovician Famatina K-bentonite suite in Argentina and the Upper Ordovician Millbrig-Deicke-Kinnekulle suite of North America and Europe. Here, we present high-resolution ID-TIMS U-Pb zircon ages of K-bentonites from measured sections of the San Juan Formation (Talacasto and Cerro La Chilca section) of the Argentine Precordillera. K-bentonites from the Argentine Precordillera provide stratigraphically consistent (i.e., younging upward) ages that range from 473.45 ± 0.70. Ma to 469.53 ± 0.62. Ma, and constrain the age of a low-magnitude (2%), globally recorded, negative carbon-isotope excursion. Evaluation of the timing of K-bentonite deposition in the Argentina Precordillera relative to marine biostratigraphic and biogeochemical records provides insight into relationships between explosive volcanism and regional to global environmental change. From a regional standpoint, these ages provide critical direct evidence for a Dapingian to earliest Darriwilian age of the upper San Juan Formation at sampled localities. These ages are consistent with carbon-isotope data suggesting that the San Juan Formation in the region of its type section is coeval with only the base of the often-correlated Table Head Group of western Newfoundland. This data thus highlights the difficulties in using regional biostratigraphic data - particularly within erosionally truncated or otherwise diachronous units - to define the timeframe of carbon-isotope chemostratigraphy. New geochronological data also indicate that a discrete negative carbon-isotope excursion within the San Juan and Table Head formations is correlative to a globally recognized pre-MDICE negative excursion, and indicates that this aspect of the marine carbon isotope record can be used as a discrete chronologic marker. San Juan Formation bentonites, however, cannot be discretely correlated with observed, environmentally significant changes in the Middle Ordovician marine geochemical records of carbon, sulfur, strontium, or sea surface temperature. These results suggest that the extent of volcanism represented by the Famatina bentonite suite was insufficient to affect global surface environments and that the relationship between explosive volcanism and environmental change may not be straightforward as previously suggested.

Original languageEnglish (US)
Pages (from-to)88-101
Number of pages14
JournalPalaeogeography, Palaeoclimatology, Palaeoecology
Volume321-322
DOIs
StatePublished - Mar 1 2012
Externally publishedYes

Fingerprint

volcanic activity
bentonite
geochemistry
geochronology
explosive volcanism
Ordovician
carbon isotope
isotopes
carbon
volcanism
environmental change
Argentina
chemostratigraphy
type section
Newfoundland and Labrador
climate forcing
strontium
global change
surface temperature
preserves

Keywords

  • Argentina
  • Environmental change
  • Geochronology
  • K-bentonite
  • Middle Ordovician

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Palaeontology
  • Earth-Surface Processes
  • Oceanography

Cite this

Bentonite geochronology, marine geochemistry, and the Great Ordovician Biodiversification Event (GOBE). / Thompson, Cara; Kah, Linda C.; Astini, Ricardo; Bowring, Samuel A.; Buchwaldt, Robert.

In: Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 321-322, 01.03.2012, p. 88-101.

Research output: Contribution to journalArticle

Thompson, Cara ; Kah, Linda C. ; Astini, Ricardo ; Bowring, Samuel A. ; Buchwaldt, Robert. / Bentonite geochronology, marine geochemistry, and the Great Ordovician Biodiversification Event (GOBE). In: Palaeogeography, Palaeoclimatology, Palaeoecology. 2012 ; Vol. 321-322. pp. 88-101.
@article{ef5a5c02750246809ad7de1ce0001a4e,
title = "Bentonite geochronology, marine geochemistry, and the Great Ordovician Biodiversification Event (GOBE)",
abstract = "Attribution of Ordovician climate forcing to explosive volcanism and the potential global importance of volcanism in Ordovician biodiversification suggest the necessity of evaluating the relationships between K-bentonite deposition and increasingly high-resolution records of marine biogeochemical change. Globally, Ordovician strata preserve an extensive record of explosive volcanism - including the widely recognized Lower to Middle Ordovician Famatina K-bentonite suite in Argentina and the Upper Ordovician Millbrig-Deicke-Kinnekulle suite of North America and Europe. Here, we present high-resolution ID-TIMS U-Pb zircon ages of K-bentonites from measured sections of the San Juan Formation (Talacasto and Cerro La Chilca section) of the Argentine Precordillera. K-bentonites from the Argentine Precordillera provide stratigraphically consistent (i.e., younging upward) ages that range from 473.45 ± 0.70. Ma to 469.53 ± 0.62. Ma, and constrain the age of a low-magnitude (2{\%}), globally recorded, negative carbon-isotope excursion. Evaluation of the timing of K-bentonite deposition in the Argentina Precordillera relative to marine biostratigraphic and biogeochemical records provides insight into relationships between explosive volcanism and regional to global environmental change. From a regional standpoint, these ages provide critical direct evidence for a Dapingian to earliest Darriwilian age of the upper San Juan Formation at sampled localities. These ages are consistent with carbon-isotope data suggesting that the San Juan Formation in the region of its type section is coeval with only the base of the often-correlated Table Head Group of western Newfoundland. This data thus highlights the difficulties in using regional biostratigraphic data - particularly within erosionally truncated or otherwise diachronous units - to define the timeframe of carbon-isotope chemostratigraphy. New geochronological data also indicate that a discrete negative carbon-isotope excursion within the San Juan and Table Head formations is correlative to a globally recognized pre-MDICE negative excursion, and indicates that this aspect of the marine carbon isotope record can be used as a discrete chronologic marker. San Juan Formation bentonites, however, cannot be discretely correlated with observed, environmentally significant changes in the Middle Ordovician marine geochemical records of carbon, sulfur, strontium, or sea surface temperature. These results suggest that the extent of volcanism represented by the Famatina bentonite suite was insufficient to affect global surface environments and that the relationship between explosive volcanism and environmental change may not be straightforward as previously suggested.",
keywords = "Argentina, Environmental change, Geochronology, K-bentonite, Middle Ordovician",
author = "Cara Thompson and Kah, {Linda C.} and Ricardo Astini and Bowring, {Samuel A.} and Robert Buchwaldt",
year = "2012",
month = "3",
day = "1",
doi = "10.1016/j.palaeo.2012.01.022",
language = "English (US)",
volume = "321-322",
pages = "88--101",
journal = "Palaeogeography, Palaeoclimatology, Palaeoecology",
issn = "0031-0182",
publisher = "Elsevier",

}

TY - JOUR

T1 - Bentonite geochronology, marine geochemistry, and the Great Ordovician Biodiversification Event (GOBE)

AU - Thompson, Cara

AU - Kah, Linda C.

AU - Astini, Ricardo

AU - Bowring, Samuel A.

AU - Buchwaldt, Robert

PY - 2012/3/1

Y1 - 2012/3/1

N2 - Attribution of Ordovician climate forcing to explosive volcanism and the potential global importance of volcanism in Ordovician biodiversification suggest the necessity of evaluating the relationships between K-bentonite deposition and increasingly high-resolution records of marine biogeochemical change. Globally, Ordovician strata preserve an extensive record of explosive volcanism - including the widely recognized Lower to Middle Ordovician Famatina K-bentonite suite in Argentina and the Upper Ordovician Millbrig-Deicke-Kinnekulle suite of North America and Europe. Here, we present high-resolution ID-TIMS U-Pb zircon ages of K-bentonites from measured sections of the San Juan Formation (Talacasto and Cerro La Chilca section) of the Argentine Precordillera. K-bentonites from the Argentine Precordillera provide stratigraphically consistent (i.e., younging upward) ages that range from 473.45 ± 0.70. Ma to 469.53 ± 0.62. Ma, and constrain the age of a low-magnitude (2%), globally recorded, negative carbon-isotope excursion. Evaluation of the timing of K-bentonite deposition in the Argentina Precordillera relative to marine biostratigraphic and biogeochemical records provides insight into relationships between explosive volcanism and regional to global environmental change. From a regional standpoint, these ages provide critical direct evidence for a Dapingian to earliest Darriwilian age of the upper San Juan Formation at sampled localities. These ages are consistent with carbon-isotope data suggesting that the San Juan Formation in the region of its type section is coeval with only the base of the often-correlated Table Head Group of western Newfoundland. This data thus highlights the difficulties in using regional biostratigraphic data - particularly within erosionally truncated or otherwise diachronous units - to define the timeframe of carbon-isotope chemostratigraphy. New geochronological data also indicate that a discrete negative carbon-isotope excursion within the San Juan and Table Head formations is correlative to a globally recognized pre-MDICE negative excursion, and indicates that this aspect of the marine carbon isotope record can be used as a discrete chronologic marker. San Juan Formation bentonites, however, cannot be discretely correlated with observed, environmentally significant changes in the Middle Ordovician marine geochemical records of carbon, sulfur, strontium, or sea surface temperature. These results suggest that the extent of volcanism represented by the Famatina bentonite suite was insufficient to affect global surface environments and that the relationship between explosive volcanism and environmental change may not be straightforward as previously suggested.

AB - Attribution of Ordovician climate forcing to explosive volcanism and the potential global importance of volcanism in Ordovician biodiversification suggest the necessity of evaluating the relationships between K-bentonite deposition and increasingly high-resolution records of marine biogeochemical change. Globally, Ordovician strata preserve an extensive record of explosive volcanism - including the widely recognized Lower to Middle Ordovician Famatina K-bentonite suite in Argentina and the Upper Ordovician Millbrig-Deicke-Kinnekulle suite of North America and Europe. Here, we present high-resolution ID-TIMS U-Pb zircon ages of K-bentonites from measured sections of the San Juan Formation (Talacasto and Cerro La Chilca section) of the Argentine Precordillera. K-bentonites from the Argentine Precordillera provide stratigraphically consistent (i.e., younging upward) ages that range from 473.45 ± 0.70. Ma to 469.53 ± 0.62. Ma, and constrain the age of a low-magnitude (2%), globally recorded, negative carbon-isotope excursion. Evaluation of the timing of K-bentonite deposition in the Argentina Precordillera relative to marine biostratigraphic and biogeochemical records provides insight into relationships between explosive volcanism and regional to global environmental change. From a regional standpoint, these ages provide critical direct evidence for a Dapingian to earliest Darriwilian age of the upper San Juan Formation at sampled localities. These ages are consistent with carbon-isotope data suggesting that the San Juan Formation in the region of its type section is coeval with only the base of the often-correlated Table Head Group of western Newfoundland. This data thus highlights the difficulties in using regional biostratigraphic data - particularly within erosionally truncated or otherwise diachronous units - to define the timeframe of carbon-isotope chemostratigraphy. New geochronological data also indicate that a discrete negative carbon-isotope excursion within the San Juan and Table Head formations is correlative to a globally recognized pre-MDICE negative excursion, and indicates that this aspect of the marine carbon isotope record can be used as a discrete chronologic marker. San Juan Formation bentonites, however, cannot be discretely correlated with observed, environmentally significant changes in the Middle Ordovician marine geochemical records of carbon, sulfur, strontium, or sea surface temperature. These results suggest that the extent of volcanism represented by the Famatina bentonite suite was insufficient to affect global surface environments and that the relationship between explosive volcanism and environmental change may not be straightforward as previously suggested.

KW - Argentina

KW - Environmental change

KW - Geochronology

KW - K-bentonite

KW - Middle Ordovician

UR - http://www.scopus.com/inward/record.url?scp=84857658271&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84857658271&partnerID=8YFLogxK

U2 - 10.1016/j.palaeo.2012.01.022

DO - 10.1016/j.palaeo.2012.01.022

M3 - Article

AN - SCOPUS:84857658271

VL - 321-322

SP - 88

EP - 101

JO - Palaeogeography, Palaeoclimatology, Palaeoecology

JF - Palaeogeography, Palaeoclimatology, Palaeoecology

SN - 0031-0182

ER -