BEAM-FORMING ERRORS in MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS and THEIR EFFECTS on EPOCH of REIONIZATION SCIENCE

Abraham R. Neben, Jacqueline N. Hewitt, Richard F. Bradley, Joshua S. Dillon, G. Bernardi, Judd Bowman, F. Briggs, R. J. Cappallo, B. E. Corey, A. A. Deshpande, R. Goeke, L. J. Greenhill, B. J. Hazelton, M. Johnston-Hollitt, D. L. Kaplan, C. J. Lonsdale, S. R. McWhirter, D. A. Mitchell, M. F. Morales, E. MorganD. Oberoi, S. M. Ord, T. Prabu, N. Udaya Shankar, K. S. Srivani, R. Subrahmanyan, S. J. Tingay, R. B. Wayth, R. L. Webster, A. Williams, C. L. Williams

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the "wedge"). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the "EOR window"), showing that foreground avoidance remains a viable strategy.

Original languageEnglish (US)
Article number44
JournalAstrophysical Journal
Volume820
Issue number1
DOIs
StatePublished - Mar 20 2016

Keywords

  • cosmology: observations
  • dark ages, reionization, first stars
  • instrumentation: interferometers
  • methods: statistical
  • techniques: interferometric

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'BEAM-FORMING ERRORS in MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS and THEIR EFFECTS on EPOCH of REIONIZATION SCIENCE'. Together they form a unique fingerprint.

Cite this