Basins of attraction for species extinction and coexistence in spatial rock-paper-scissors games

Hongjing Shi, Wen Xu Wang, Rui Yang, Ying-Cheng Lai

Research output: Contribution to journalArticle

47 Scopus citations

Abstract

We study the collective dynamics of mobile species under cyclic competition by breaking the symmetry in the initial populations and examining the basins of the two distinct asymptotic states: extinction and coexistence, the latter maintaining biodiversity. We find a rich dependence of dynamical properties on initial conditions. In particular, for high mobility, only extinction basins exist and they are spirally entangled, but a basin of coexistence emerges when the mobility parameter is decreased through a critical value, whose area increases monotonically as the parameter is further decreased. The structure of extinction basins for high mobility can be predicted by a mean-field theory. These results provide a more comprehensive picture for the fundamental issue of species coexistence than previously achieved.

Original languageEnglish (US)
Article number030901
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume81
Issue number3
DOIs
StatePublished - Mar 1 2010

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Basins of attraction for species extinction and coexistence in spatial rock-paper-scissors games'. Together they form a unique fingerprint.

  • Cite this