B-side electron transfer in the HE(M182) reaction center mutant from rhodobacter sphaeroides

Evaldas Katilius, Zivile Katiliene, Su Lin, Aileen K W Taguchi, Neal Woodbury

Research output: Contribution to journalArticle

19 Scopus citations

Abstract

The histidine (H) ligand of the bacteriochlorophyll monomer molecule on the B-side of the photosynthetic reaction center (RC) from Rhodobacter (Rb.) sphaeroides was replaced with a glutamic acid residue (E) (mutant HE(M182)). The photochemical properties of this mutant are markedly different from those of wildtype RCs. The excited state of the initial electron donor (P*) decays with a lifetime of 2.8 ± 0.1 ps, which is about 10% faster than in wild-type RCs. The faster decay of the excited state is due to an additional electron-transfer pathway in the mutant from P to the monomer bacteriochlorophyll on the B-side (BB) of the RC, forming the state P+BB-. The initial yield of the B-side electron transfer is estimated at about 35%, whereas the remaining 65% of P* leads to electron transfer along the A-side pigments forming the charge-separated state P+HA-. The P+BB- state formed during initial charge separation decays with a lifetime of 45 ps. Of the 35% P+BB- initially formed, 10% decays to form P+HA- via back electron transfer to P* and subsequent A-side charge separation. The other 25% of the state P+BB- recombines to the ground state. There is no observable further electron transfer from P+BB- to the B-side bacteriopheophytin molecule, HB. Apparently, P+HB- is at least as high in free energy as is P+BB- in this mutant, preventing further B-side electron transfer. From analysis of the long-lived fluorescence kinetics and transient absorbance data, the standard free energy of the state P+BB- in the HE(M182) mutant is estimated to be 70 meV below P*. Thus, the standard free energy of the state P+HB-, which should be similar in the mutant and the wild-type RCs, is apparently less than or equal to 70 meV below P*.

Original languageEnglish (US)
Pages (from-to)12344-12350
Number of pages7
JournalJournal of Physical Chemistry B
Volume106
Issue number47
DOIs
StatePublished - Nov 28 2002

    Fingerprint

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Cite this