Auxiliary field diffusion Monte Carlo calculation of ground state properties of neutron drops

F. Pederiva, A. Sarsa, Kevin Schmidt, S. Fantoni

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

The auxiliary field diffusion Monte Carlo method has been applied to simulate droplets of 7 and 8 neutrons. Results for realistic nucleon-nucleon interactions, which include tensor, spin-orbit and three-body forces, plus a standard one-body confining potential, have been compared with analogous calculations obtained with Green's function Monte Carlo methods. We have studied the dependence of the binding energy, the one-body density and the spin-orbit splittings of 7n on the depth of the confining potential. The results obtained show an overall agreement between the two quantum Monte Carlo methods, although there persist differences in the evaluation of spin-orbit forces, as previously indicated by bulk neutron matter calculations. Energy density functional models, largely used in astrophysical applications, seem to provide results significantly different from those of quantum simulations. Given its scaling behavior in the number of nucleons, the auxiliary field diffusion Monte Carlo method seems to be one of the best candidate to perform ab initio calculations on neutron rich nuclei.

Original languageEnglish (US)
Pages (from-to)255-268
Number of pages14
JournalNuclear Physics A
Volume742
Issue number1-2
DOIs
StatePublished - Sep 20 2004

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Auxiliary field diffusion Monte Carlo calculation of ground state properties of neutron drops'. Together they form a unique fingerprint.

Cite this