Automatic detection of directions of dimensional control in mechanical parts

Prashant Mohan, Payam Haghighi, Jami J. Shah, Joseph K. Davidson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

This research is part of a larger project which aims at developing a tool to help designers create effective GD&T schemas. The first step towards this goal is to determine the particular directions in which dimensions and tolerances need to be controlled. These directions we label here as "Directions of (Dimensional) Control" or DoC for short. Regardless of whether one uses chain dimensioning, reference dimensioning or geometric tolerancing, all size and basic dimensions of position line up in a finite number of directions or Directions of Control. This paper presents an approach for automatically identifying the directions of control from CAD models of mechanical parts. The only input to the system is the geometry of parts or assemblies in STEP file format. The analysis is done part by part for an assembly. First, planar and cylindrical features are recognized and their normal/axes extracted. The extracted features are then organized into groups of parallel normal or axes directions. Cylindrical features can belong to two or more Directions of Control, while planar features belong can only belong to one. Features in each DoC are then ordered based on perpendicular relative distances. Each ordered feature list forms a linear chain in which nodes represent features and links are attributed with relative distance to the nearest neighbors on each side. DoC chains are related to each other by relative orientation. Therefore, the chains are combined into a unified graph, using the junction nodes to contain the relative orientation between the chains. The extracted Directions of Control can be output in both textual and graphical form. Although the primary motivation for automatic DoC graph generation is computer assisted tolerancing and automatic tolerance analysis, the paper also discusses other applications in manufacturing.

Original languageEnglish (US)
Title of host publicationASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
Volume1
ISBN (Print)9780791845806
DOIs
StatePublished - 2014
EventASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference - Detroit, United States
Duration: Jun 9 2014Jun 13 2014

Other

OtherASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
CountryUnited States
CityDetroit
Period6/9/146/13/14

Fingerprint

Labels
Computer aided design
Geometry

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering

Cite this

Mohan, P., Haghighi, P., Shah, J. J., & Davidson, J. K. (2014). Automatic detection of directions of dimensional control in mechanical parts. In ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference (Vol. 1). Web Portal ASME (American Society of Mechanical Engineers). https://doi.org/10.1115/MSEC2014-4143

Automatic detection of directions of dimensional control in mechanical parts. / Mohan, Prashant; Haghighi, Payam; Shah, Jami J.; Davidson, Joseph K.

ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. Vol. 1 Web Portal ASME (American Society of Mechanical Engineers), 2014.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Mohan, P, Haghighi, P, Shah, JJ & Davidson, JK 2014, Automatic detection of directions of dimensional control in mechanical parts. in ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. vol. 1, Web Portal ASME (American Society of Mechanical Engineers), ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference, Detroit, United States, 6/9/14. https://doi.org/10.1115/MSEC2014-4143
Mohan P, Haghighi P, Shah JJ, Davidson JK. Automatic detection of directions of dimensional control in mechanical parts. In ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. Vol. 1. Web Portal ASME (American Society of Mechanical Engineers). 2014 https://doi.org/10.1115/MSEC2014-4143
Mohan, Prashant ; Haghighi, Payam ; Shah, Jami J. ; Davidson, Joseph K. / Automatic detection of directions of dimensional control in mechanical parts. ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. Vol. 1 Web Portal ASME (American Society of Mechanical Engineers), 2014.
@inproceedings{7a99899ceeee4c49bdadcd36e7b43b33,
title = "Automatic detection of directions of dimensional control in mechanical parts",
abstract = "This research is part of a larger project which aims at developing a tool to help designers create effective GD&T schemas. The first step towards this goal is to determine the particular directions in which dimensions and tolerances need to be controlled. These directions we label here as {"}Directions of (Dimensional) Control{"} or DoC for short. Regardless of whether one uses chain dimensioning, reference dimensioning or geometric tolerancing, all size and basic dimensions of position line up in a finite number of directions or Directions of Control. This paper presents an approach for automatically identifying the directions of control from CAD models of mechanical parts. The only input to the system is the geometry of parts or assemblies in STEP file format. The analysis is done part by part for an assembly. First, planar and cylindrical features are recognized and their normal/axes extracted. The extracted features are then organized into groups of parallel normal or axes directions. Cylindrical features can belong to two or more Directions of Control, while planar features belong can only belong to one. Features in each DoC are then ordered based on perpendicular relative distances. Each ordered feature list forms a linear chain in which nodes represent features and links are attributed with relative distance to the nearest neighbors on each side. DoC chains are related to each other by relative orientation. Therefore, the chains are combined into a unified graph, using the junction nodes to contain the relative orientation between the chains. The extracted Directions of Control can be output in both textual and graphical form. Although the primary motivation for automatic DoC graph generation is computer assisted tolerancing and automatic tolerance analysis, the paper also discusses other applications in manufacturing.",
author = "Prashant Mohan and Payam Haghighi and Shah, {Jami J.} and Davidson, {Joseph K.}",
year = "2014",
doi = "10.1115/MSEC2014-4143",
language = "English (US)",
isbn = "9780791845806",
volume = "1",
booktitle = "ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference",
publisher = "Web Portal ASME (American Society of Mechanical Engineers)",

}

TY - GEN

T1 - Automatic detection of directions of dimensional control in mechanical parts

AU - Mohan, Prashant

AU - Haghighi, Payam

AU - Shah, Jami J.

AU - Davidson, Joseph K.

PY - 2014

Y1 - 2014

N2 - This research is part of a larger project which aims at developing a tool to help designers create effective GD&T schemas. The first step towards this goal is to determine the particular directions in which dimensions and tolerances need to be controlled. These directions we label here as "Directions of (Dimensional) Control" or DoC for short. Regardless of whether one uses chain dimensioning, reference dimensioning or geometric tolerancing, all size and basic dimensions of position line up in a finite number of directions or Directions of Control. This paper presents an approach for automatically identifying the directions of control from CAD models of mechanical parts. The only input to the system is the geometry of parts or assemblies in STEP file format. The analysis is done part by part for an assembly. First, planar and cylindrical features are recognized and their normal/axes extracted. The extracted features are then organized into groups of parallel normal or axes directions. Cylindrical features can belong to two or more Directions of Control, while planar features belong can only belong to one. Features in each DoC are then ordered based on perpendicular relative distances. Each ordered feature list forms a linear chain in which nodes represent features and links are attributed with relative distance to the nearest neighbors on each side. DoC chains are related to each other by relative orientation. Therefore, the chains are combined into a unified graph, using the junction nodes to contain the relative orientation between the chains. The extracted Directions of Control can be output in both textual and graphical form. Although the primary motivation for automatic DoC graph generation is computer assisted tolerancing and automatic tolerance analysis, the paper also discusses other applications in manufacturing.

AB - This research is part of a larger project which aims at developing a tool to help designers create effective GD&T schemas. The first step towards this goal is to determine the particular directions in which dimensions and tolerances need to be controlled. These directions we label here as "Directions of (Dimensional) Control" or DoC for short. Regardless of whether one uses chain dimensioning, reference dimensioning or geometric tolerancing, all size and basic dimensions of position line up in a finite number of directions or Directions of Control. This paper presents an approach for automatically identifying the directions of control from CAD models of mechanical parts. The only input to the system is the geometry of parts or assemblies in STEP file format. The analysis is done part by part for an assembly. First, planar and cylindrical features are recognized and their normal/axes extracted. The extracted features are then organized into groups of parallel normal or axes directions. Cylindrical features can belong to two or more Directions of Control, while planar features belong can only belong to one. Features in each DoC are then ordered based on perpendicular relative distances. Each ordered feature list forms a linear chain in which nodes represent features and links are attributed with relative distance to the nearest neighbors on each side. DoC chains are related to each other by relative orientation. Therefore, the chains are combined into a unified graph, using the junction nodes to contain the relative orientation between the chains. The extracted Directions of Control can be output in both textual and graphical form. Although the primary motivation for automatic DoC graph generation is computer assisted tolerancing and automatic tolerance analysis, the paper also discusses other applications in manufacturing.

UR - http://www.scopus.com/inward/record.url?scp=84908884627&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84908884627&partnerID=8YFLogxK

U2 - 10.1115/MSEC2014-4143

DO - 10.1115/MSEC2014-4143

M3 - Conference contribution

SN - 9780791845806

VL - 1

BT - ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference

PB - Web Portal ASME (American Society of Mechanical Engineers)

ER -