Authentication capacity of adversarial channels

Oliver Kosut, Jörg Kliewer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

Keyless authentication is considered in an adversarial point-to-point channel. Namely, a legitimate transmitter and receiver aim to communicate over a noisy channel that may or may not also contain an active adversary, capable of transmitting an arbitrary signal into the channel. If the adversary is not present, then the receiver must successfully decode the message with high probability; if it is present, then the receiver must either decode the message or detect the adversary's presence. Thus, whenever the receiver decodes, it can be certain that the decoded message is authentic. The exact authentication capacity is characterized for discrete-memoryless adversary channels, where the adversary is assumed to know the code but not the message. The authentication capacity is shown to be either zero or equal to the no-adversary capacity, depending on whether the channel satisfies a condition termed overwritability.

Original languageEnglish (US)
Title of host publication2018 IEEE Information Theory Workshop, ITW 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538635995
DOIs
StatePublished - Jul 2 2018
Event2018 IEEE Information Theory Workshop, ITW 2018 - Guangzhou, China
Duration: Nov 25 2018Nov 29 2018

Publication series

Name2018 IEEE Information Theory Workshop, ITW 2018

Conference

Conference2018 IEEE Information Theory Workshop, ITW 2018
Country/TerritoryChina
CityGuangzhou
Period11/25/1811/29/18

ASJC Scopus subject areas

  • Information Systems

Fingerprint

Dive into the research topics of 'Authentication capacity of adversarial channels'. Together they form a unique fingerprint.

Cite this