Applications of free-electron lasers in the biological and material sciences

G. S. Edwards, S. J. Allen, R. F. Haglund, R. J. Nemanich, B. Redlich, J. D. Simon, W. C. Yang

Research output: Contribution to journalReview articlepeer-review

55 Scopus citations

Abstract

Free-Electron Lasers (FELs) collectively operate from the terahertz through the ultraviolet range and via intracavity Compton backscattering into the X-ray and gamma-ray regimes. FELs are continuously tunable and can provide optical powers, pulse structures and polarizations that are not matched by conventional lasers. Representative research in the biological and biomedical sciences and condensed matter and material research are described to illustrate the breadth and impact of FEL applications. These include terahertz dynamics in materials far from equilibrium, infrared nonlinear vibrational spectroscopy to investigate dynamical processes in condensed-phase systems, infrared resonant-enhanced multiphoton ionization for gas-phase spectroscopy and spectrometry, infrared matrix-assisted laser-desorption-ionization and infrared matrix-assisted pulsed laser evaporation for analysis and processing of organic materials, human neurosurgery and ophthalmic surgery using a medical infrared FEL and ultraviolet photoemission electron microscopy for nanoscale characterization of materials and nanoscale phenomena. The ongoing development of ultraviolet and X-ray FELs are discussed in terms of future opportunities for applications research.

Original languageEnglish (US)
Pages (from-to)711-735
Number of pages25
JournalPhotochemistry and photobiology
Volume81
Issue number4
DOIs
StatePublished - Jul 1 2005
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Applications of free-electron lasers in the biological and material sciences'. Together they form a unique fingerprint.

Cite this