Application of range migration algorithms to imaging with a dynamic metasurface antenna

Laura Pulido-Mancera, Thomas Fromenteze, Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, Matthew Reynolds, David Smith

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Dynamic metasurface antennas are planar structures that exhibit remarkable capabilities in controlling electromagnetic wavefronts, advantages that are particularly attractive for microwave imaging. These antennas exhibit strong frequency dispersion and produce rapidly varying radiation patterns. Such behavior presents unique challenges for integration with conventional imaging algorithms. We adapt the range migration algorithm (RMA) for use with dynamic metasurfaces and propose a preprocessing step that ultimately allows for expression of measurements in the spatial frequency domain, from which the fast Fourier transform can efficiently reconstruct the scene. Numerical studies illustrate imaging performance using conventional methods and the adapted RMA, demonstrating that the RMA can reconstruct images with comparable quality in a fraction of the time. The algorithm can be extended to a broad class of complex antennas for application in synthetic aperture radar and MIMO imaging.

Original languageEnglish (US)
Pages (from-to)2082-2092
Number of pages11
JournalJournal of the Optical Society of America B: Optical Physics
Volume33
Issue number10
DOIs
StatePublished - Oct 1 2016
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Application of range migration algorithms to imaging with a dynamic metasurface antenna'. Together they form a unique fingerprint.

Cite this