Application of catalyst-free click reactions in attaching affinity molecules to tips of atomic force microscopy for detection of protein biomarkers

Subhadip Senapati, Saikat Manna, Stuart Lindsay, Peiming Zhang

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Atomic force microscopy (AFM) has been extensively used in studies of biological interactions. Particularly, AFM based force spectroscopy and recognition imaging can sense biomolecules on a single molecule level, having great potential to become a tool for molecular diagnostics in clinics. These techniques, however, require affinity molecules to be attached to AFM tips in order to specifically detect their targets. The attachment chemistry currently used on silicon tips involves multiple steps of reactions and moisture sensitive chemicals, such as (3-aminopropyl)triethoxysilane (APTES) and N-hydroxysuccinimide (NHS) ester, making the process difficult to operate in aqueous solutions. In the present study, we have developed a user-friendly protocol to functionalize the AFM tips with affinity molecules. A key feature of it is that all reactions are carried out in aqueous solutions. In summary, we first synthesized a molecular anchor composed of cyclooctyne and silatrane for introduction of a chemically reactive function to AFM tips and a bifunctional polyethylene glycol linker that harnesses two orthogonal click reactions, copper free alkyne-azide cycloaddition and thiol-vinylsulfone Michael addition, for attaching affinity molecules to AFM tips. The attachment chemistry was then validated by attaching antithrombin DNA aptamers and cyclo-RGD peptides to silicon nitride (SiN) tips, respectively, and measuring forces of unbinding these affinity molecules from their protein cognates human α-thrombin and human α5β1-integrin immobilized on mica surfaces. In turn, we used the same attachment chemistry to functionalize silicon tips with the same affinity molecules for AFM based recognition imaging, showing that the disease-relevant biomarkers such as α-thrombin and α5β1-integrin can be detected with high sensitivity and specificity by the single molecule technique. These studies demonstrate the feasibility of our attachment chemistry for the use in functionalization of AFM tips with affinity molecules.

Original languageEnglish (US)
Pages (from-to)14622-14630
Number of pages9
JournalLangmuir
Volume29
Issue number47
DOIs
StatePublished - Nov 26 2013

Fingerprint

biomarkers
Biomarkers
affinity
Atomic force microscopy
atomic force microscopy
proteins
Proteins
catalysts
Catalysts
Molecules
attachment
molecules
thrombin
chemistry
Silicon
Integrins
Thrombin
Nucleotide Aptamers
aqueous solutions
harnesses

ASJC Scopus subject areas

  • Electrochemistry
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Materials Science(all)
  • Spectroscopy

Cite this

Application of catalyst-free click reactions in attaching affinity molecules to tips of atomic force microscopy for detection of protein biomarkers. / Senapati, Subhadip; Manna, Saikat; Lindsay, Stuart; Zhang, Peiming.

In: Langmuir, Vol. 29, No. 47, 26.11.2013, p. 14622-14630.

Research output: Contribution to journalArticle

@article{d0434e7948454da9914e2875d359e91d,
title = "Application of catalyst-free click reactions in attaching affinity molecules to tips of atomic force microscopy for detection of protein biomarkers",
abstract = "Atomic force microscopy (AFM) has been extensively used in studies of biological interactions. Particularly, AFM based force spectroscopy and recognition imaging can sense biomolecules on a single molecule level, having great potential to become a tool for molecular diagnostics in clinics. These techniques, however, require affinity molecules to be attached to AFM tips in order to specifically detect their targets. The attachment chemistry currently used on silicon tips involves multiple steps of reactions and moisture sensitive chemicals, such as (3-aminopropyl)triethoxysilane (APTES) and N-hydroxysuccinimide (NHS) ester, making the process difficult to operate in aqueous solutions. In the present study, we have developed a user-friendly protocol to functionalize the AFM tips with affinity molecules. A key feature of it is that all reactions are carried out in aqueous solutions. In summary, we first synthesized a molecular anchor composed of cyclooctyne and silatrane for introduction of a chemically reactive function to AFM tips and a bifunctional polyethylene glycol linker that harnesses two orthogonal click reactions, copper free alkyne-azide cycloaddition and thiol-vinylsulfone Michael addition, for attaching affinity molecules to AFM tips. The attachment chemistry was then validated by attaching antithrombin DNA aptamers and cyclo-RGD peptides to silicon nitride (SiN) tips, respectively, and measuring forces of unbinding these affinity molecules from their protein cognates human α-thrombin and human α5β1-integrin immobilized on mica surfaces. In turn, we used the same attachment chemistry to functionalize silicon tips with the same affinity molecules for AFM based recognition imaging, showing that the disease-relevant biomarkers such as α-thrombin and α5β1-integrin can be detected with high sensitivity and specificity by the single molecule technique. These studies demonstrate the feasibility of our attachment chemistry for the use in functionalization of AFM tips with affinity molecules.",
author = "Subhadip Senapati and Saikat Manna and Stuart Lindsay and Peiming Zhang",
year = "2013",
month = "11",
day = "26",
doi = "10.1021/la4039667",
language = "English (US)",
volume = "29",
pages = "14622--14630",
journal = "Langmuir",
issn = "0743-7463",
publisher = "American Chemical Society",
number = "47",

}

TY - JOUR

T1 - Application of catalyst-free click reactions in attaching affinity molecules to tips of atomic force microscopy for detection of protein biomarkers

AU - Senapati, Subhadip

AU - Manna, Saikat

AU - Lindsay, Stuart

AU - Zhang, Peiming

PY - 2013/11/26

Y1 - 2013/11/26

N2 - Atomic force microscopy (AFM) has been extensively used in studies of biological interactions. Particularly, AFM based force spectroscopy and recognition imaging can sense biomolecules on a single molecule level, having great potential to become a tool for molecular diagnostics in clinics. These techniques, however, require affinity molecules to be attached to AFM tips in order to specifically detect their targets. The attachment chemistry currently used on silicon tips involves multiple steps of reactions and moisture sensitive chemicals, such as (3-aminopropyl)triethoxysilane (APTES) and N-hydroxysuccinimide (NHS) ester, making the process difficult to operate in aqueous solutions. In the present study, we have developed a user-friendly protocol to functionalize the AFM tips with affinity molecules. A key feature of it is that all reactions are carried out in aqueous solutions. In summary, we first synthesized a molecular anchor composed of cyclooctyne and silatrane for introduction of a chemically reactive function to AFM tips and a bifunctional polyethylene glycol linker that harnesses two orthogonal click reactions, copper free alkyne-azide cycloaddition and thiol-vinylsulfone Michael addition, for attaching affinity molecules to AFM tips. The attachment chemistry was then validated by attaching antithrombin DNA aptamers and cyclo-RGD peptides to silicon nitride (SiN) tips, respectively, and measuring forces of unbinding these affinity molecules from their protein cognates human α-thrombin and human α5β1-integrin immobilized on mica surfaces. In turn, we used the same attachment chemistry to functionalize silicon tips with the same affinity molecules for AFM based recognition imaging, showing that the disease-relevant biomarkers such as α-thrombin and α5β1-integrin can be detected with high sensitivity and specificity by the single molecule technique. These studies demonstrate the feasibility of our attachment chemistry for the use in functionalization of AFM tips with affinity molecules.

AB - Atomic force microscopy (AFM) has been extensively used in studies of biological interactions. Particularly, AFM based force spectroscopy and recognition imaging can sense biomolecules on a single molecule level, having great potential to become a tool for molecular diagnostics in clinics. These techniques, however, require affinity molecules to be attached to AFM tips in order to specifically detect their targets. The attachment chemistry currently used on silicon tips involves multiple steps of reactions and moisture sensitive chemicals, such as (3-aminopropyl)triethoxysilane (APTES) and N-hydroxysuccinimide (NHS) ester, making the process difficult to operate in aqueous solutions. In the present study, we have developed a user-friendly protocol to functionalize the AFM tips with affinity molecules. A key feature of it is that all reactions are carried out in aqueous solutions. In summary, we first synthesized a molecular anchor composed of cyclooctyne and silatrane for introduction of a chemically reactive function to AFM tips and a bifunctional polyethylene glycol linker that harnesses two orthogonal click reactions, copper free alkyne-azide cycloaddition and thiol-vinylsulfone Michael addition, for attaching affinity molecules to AFM tips. The attachment chemistry was then validated by attaching antithrombin DNA aptamers and cyclo-RGD peptides to silicon nitride (SiN) tips, respectively, and measuring forces of unbinding these affinity molecules from their protein cognates human α-thrombin and human α5β1-integrin immobilized on mica surfaces. In turn, we used the same attachment chemistry to functionalize silicon tips with the same affinity molecules for AFM based recognition imaging, showing that the disease-relevant biomarkers such as α-thrombin and α5β1-integrin can be detected with high sensitivity and specificity by the single molecule technique. These studies demonstrate the feasibility of our attachment chemistry for the use in functionalization of AFM tips with affinity molecules.

UR - http://www.scopus.com/inward/record.url?scp=84888627371&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84888627371&partnerID=8YFLogxK

U2 - 10.1021/la4039667

DO - 10.1021/la4039667

M3 - Article

VL - 29

SP - 14622

EP - 14630

JO - Langmuir

JF - Langmuir

SN - 0743-7463

IS - 47

ER -