1 Scopus citations

Abstract

Analysis of social networks has the potential to provide insight into a wide range of applications. As datasets grow, a key challenge is the lack of existing truth models. Unlike traditional signal processing, where models of truth and background data exist and are often well defined, these models are commonly lacking for social networks. This paper presents a transdisciplinary approach of mitigating this challenge by leveraging research on scientific innovation together with a novel Signal Processing for Graphs (SPG) algorithmic framework. The results suggest new ways for the study of innovation patterns in publication networks.

Original languageEnglish (US)
Title of host publicationConference Record of the 48th Asilomar Conference on Signals, Systems and Computers
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages2005-2009
Number of pages5
ISBN (Electronic)9781479982974
DOIs
StatePublished - Apr 24 2015
Event48th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015 - Pacific Grove, United States
Duration: Nov 2 2014Nov 5 2014

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Volume2015-April
ISSN (Print)1058-6393

Other

Other48th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015
CountryUnited States
CityPacific Grove
Period11/2/1411/5/14

    Fingerprint

ASJC Scopus subject areas

  • Signal Processing
  • Computer Networks and Communications

Cite this

Bliss, N., Peirson, B. R. E., Painter, D., & Laubichler, M. (2015). Anomalous subgraph detection in publication networks: Leveraging truth. In M. B. Matthews (Ed.), Conference Record of the 48th Asilomar Conference on Signals, Systems and Computers (pp. 2005-2009). [7094823] (Conference Record - Asilomar Conference on Signals, Systems and Computers; Vol. 2015-April). IEEE Computer Society. https://doi.org/10.1109/ACSSC.2014.7094823