Anomalous molybdenum isotope trends in Upper Pennsylvanian euxinic facies

Significance for use of δ 98Mo as a global marine redox proxy

Achim D. Herrmann, Brian Kendall, Thomas J. Algeo, Gwyneth Gordon, Laura E. Wasylenki, Ariel Anbar

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

The use of molybdenum isotope data (δ 98Mo) from organic-rich shales to draw inferences concerning marine paleoredox conditions at a global scale is predicated upon the assumptions of (1) a residence time of Mo in seawater much greater than the ocean mixing time, and (2) quantitative removal of Mo from a strongly euxinic ([H 2S] aq>11μM) water column to the sediment, thus preserving the seawater δ 98Mo signature. In this study we analyze Mo isotopic variation in the Hushpuckney Shale, a 73-cm-thick unit representing the late transgressive to early regressive stages of a glacio-eustatic cyclothem (Swope Formation) deposited in the Late Pennsylvanian Midcontinent Sea (LPMS) of North America. The Hushpuckney can be subdivided into four stratigraphic zones of distinctive geochemical character. Zones I and III, which accumulated under weakly euxinic conditions, acquired relatively high δ 98Mo values (+0.9 to +1.1‰), whereas Zone II, which accumulated under intensely euxinic conditions, acquired lower δ 98Mo values (~+0.6‰). Zone IV, which accumulated under suboxic conditions in the water column, acquired the heaviest δ 98Mo values (+1.1 to +1.8‰). These results contrast with the pattern of redox - δ 98Mo covariation in modern marine environments, in which the heaviest δ 98Mo values are found in the most intensely euxinic facies.We evaluate three different hypotheses to account for the Mo isotopic patterns of the Hushpuckney Shale. One hypothesis, seawater-freshwater mixing, is rejected owing to isotopic mass balance considerations. A second hypothesis is a local control on δ 98Mo by water-column redox cycling of Mn, with particulate Mn-oxyhydroxides adsorbing isotopically light Mo and transferring it to the sediment, a process that was most active during deposition of Zone II. The significance of this scenario is that euxinic black shales may not reliably record global seawater δ 98Mo in areas where a Mn-particulate shuttle is operative. A third hypothesis is based on rapid secular variation of the Mo isotope composition of Late Pennsylvanian global seawater. In order to account for δ 98Mo trends within the Hushpuckney Shale, seawater δ 98Mo must have varied by ~1.2‰ at a ~100-kyr timescale, which would have been possible only if the residence time of Mo in Late Pennsylvanian seawater was <100kyr. Although both the second and third hypotheses are viable based on the present limited δ 98Mo dataset, we discuss how each model might be tested through additional Mo isotope data.

Original languageEnglish (US)
Pages (from-to)87-98
Number of pages12
JournalChemical Geology
Volume324-325
DOIs
StatePublished - Sep 24 2012

Fingerprint

Molybdenum
Pennsylvanian
molybdenum
Seawater
Isotopes
isotope
seawater
Shale
shale
water column
Water
residence time
Sediments
suboxic conditions
cyclothem
secular variation
trend
Oxidation-Reduction
sediment
marine environment

Keywords

  • Black shale
  • Cyclothem
  • Epeiric sea
  • Hushpuckney Shale
  • Superestuarine circulation
  • Swope Formation

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geology

Cite this

Anomalous molybdenum isotope trends in Upper Pennsylvanian euxinic facies : Significance for use of δ 98Mo as a global marine redox proxy. / Herrmann, Achim D.; Kendall, Brian; Algeo, Thomas J.; Gordon, Gwyneth; Wasylenki, Laura E.; Anbar, Ariel.

In: Chemical Geology, Vol. 324-325, 24.09.2012, p. 87-98.

Research output: Contribution to journalArticle

@article{a2f874a39bc543308756f5fcf44d206d,
title = "Anomalous molybdenum isotope trends in Upper Pennsylvanian euxinic facies: Significance for use of δ 98Mo as a global marine redox proxy",
abstract = "The use of molybdenum isotope data (δ 98Mo) from organic-rich shales to draw inferences concerning marine paleoredox conditions at a global scale is predicated upon the assumptions of (1) a residence time of Mo in seawater much greater than the ocean mixing time, and (2) quantitative removal of Mo from a strongly euxinic ([H 2S] aq>11μM) water column to the sediment, thus preserving the seawater δ 98Mo signature. In this study we analyze Mo isotopic variation in the Hushpuckney Shale, a 73-cm-thick unit representing the late transgressive to early regressive stages of a glacio-eustatic cyclothem (Swope Formation) deposited in the Late Pennsylvanian Midcontinent Sea (LPMS) of North America. The Hushpuckney can be subdivided into four stratigraphic zones of distinctive geochemical character. Zones I and III, which accumulated under weakly euxinic conditions, acquired relatively high δ 98Mo values (+0.9 to +1.1‰), whereas Zone II, which accumulated under intensely euxinic conditions, acquired lower δ 98Mo values (~+0.6‰). Zone IV, which accumulated under suboxic conditions in the water column, acquired the heaviest δ 98Mo values (+1.1 to +1.8‰). These results contrast with the pattern of redox - δ 98Mo covariation in modern marine environments, in which the heaviest δ 98Mo values are found in the most intensely euxinic facies.We evaluate three different hypotheses to account for the Mo isotopic patterns of the Hushpuckney Shale. One hypothesis, seawater-freshwater mixing, is rejected owing to isotopic mass balance considerations. A second hypothesis is a local control on δ 98Mo by water-column redox cycling of Mn, with particulate Mn-oxyhydroxides adsorbing isotopically light Mo and transferring it to the sediment, a process that was most active during deposition of Zone II. The significance of this scenario is that euxinic black shales may not reliably record global seawater δ 98Mo in areas where a Mn-particulate shuttle is operative. A third hypothesis is based on rapid secular variation of the Mo isotope composition of Late Pennsylvanian global seawater. In order to account for δ 98Mo trends within the Hushpuckney Shale, seawater δ 98Mo must have varied by ~1.2‰ at a ~100-kyr timescale, which would have been possible only if the residence time of Mo in Late Pennsylvanian seawater was <100kyr. Although both the second and third hypotheses are viable based on the present limited δ 98Mo dataset, we discuss how each model might be tested through additional Mo isotope data.",
keywords = "Black shale, Cyclothem, Epeiric sea, Hushpuckney Shale, Superestuarine circulation, Swope Formation",
author = "Herrmann, {Achim D.} and Brian Kendall and Algeo, {Thomas J.} and Gwyneth Gordon and Wasylenki, {Laura E.} and Ariel Anbar",
year = "2012",
month = "9",
day = "24",
doi = "10.1016/j.chemgeo.2012.05.013",
language = "English (US)",
volume = "324-325",
pages = "87--98",
journal = "Chemical Geology",
issn = "0009-2541",
publisher = "Elsevier",

}

TY - JOUR

T1 - Anomalous molybdenum isotope trends in Upper Pennsylvanian euxinic facies

T2 - Significance for use of δ 98Mo as a global marine redox proxy

AU - Herrmann, Achim D.

AU - Kendall, Brian

AU - Algeo, Thomas J.

AU - Gordon, Gwyneth

AU - Wasylenki, Laura E.

AU - Anbar, Ariel

PY - 2012/9/24

Y1 - 2012/9/24

N2 - The use of molybdenum isotope data (δ 98Mo) from organic-rich shales to draw inferences concerning marine paleoredox conditions at a global scale is predicated upon the assumptions of (1) a residence time of Mo in seawater much greater than the ocean mixing time, and (2) quantitative removal of Mo from a strongly euxinic ([H 2S] aq>11μM) water column to the sediment, thus preserving the seawater δ 98Mo signature. In this study we analyze Mo isotopic variation in the Hushpuckney Shale, a 73-cm-thick unit representing the late transgressive to early regressive stages of a glacio-eustatic cyclothem (Swope Formation) deposited in the Late Pennsylvanian Midcontinent Sea (LPMS) of North America. The Hushpuckney can be subdivided into four stratigraphic zones of distinctive geochemical character. Zones I and III, which accumulated under weakly euxinic conditions, acquired relatively high δ 98Mo values (+0.9 to +1.1‰), whereas Zone II, which accumulated under intensely euxinic conditions, acquired lower δ 98Mo values (~+0.6‰). Zone IV, which accumulated under suboxic conditions in the water column, acquired the heaviest δ 98Mo values (+1.1 to +1.8‰). These results contrast with the pattern of redox - δ 98Mo covariation in modern marine environments, in which the heaviest δ 98Mo values are found in the most intensely euxinic facies.We evaluate three different hypotheses to account for the Mo isotopic patterns of the Hushpuckney Shale. One hypothesis, seawater-freshwater mixing, is rejected owing to isotopic mass balance considerations. A second hypothesis is a local control on δ 98Mo by water-column redox cycling of Mn, with particulate Mn-oxyhydroxides adsorbing isotopically light Mo and transferring it to the sediment, a process that was most active during deposition of Zone II. The significance of this scenario is that euxinic black shales may not reliably record global seawater δ 98Mo in areas where a Mn-particulate shuttle is operative. A third hypothesis is based on rapid secular variation of the Mo isotope composition of Late Pennsylvanian global seawater. In order to account for δ 98Mo trends within the Hushpuckney Shale, seawater δ 98Mo must have varied by ~1.2‰ at a ~100-kyr timescale, which would have been possible only if the residence time of Mo in Late Pennsylvanian seawater was <100kyr. Although both the second and third hypotheses are viable based on the present limited δ 98Mo dataset, we discuss how each model might be tested through additional Mo isotope data.

AB - The use of molybdenum isotope data (δ 98Mo) from organic-rich shales to draw inferences concerning marine paleoredox conditions at a global scale is predicated upon the assumptions of (1) a residence time of Mo in seawater much greater than the ocean mixing time, and (2) quantitative removal of Mo from a strongly euxinic ([H 2S] aq>11μM) water column to the sediment, thus preserving the seawater δ 98Mo signature. In this study we analyze Mo isotopic variation in the Hushpuckney Shale, a 73-cm-thick unit representing the late transgressive to early regressive stages of a glacio-eustatic cyclothem (Swope Formation) deposited in the Late Pennsylvanian Midcontinent Sea (LPMS) of North America. The Hushpuckney can be subdivided into four stratigraphic zones of distinctive geochemical character. Zones I and III, which accumulated under weakly euxinic conditions, acquired relatively high δ 98Mo values (+0.9 to +1.1‰), whereas Zone II, which accumulated under intensely euxinic conditions, acquired lower δ 98Mo values (~+0.6‰). Zone IV, which accumulated under suboxic conditions in the water column, acquired the heaviest δ 98Mo values (+1.1 to +1.8‰). These results contrast with the pattern of redox - δ 98Mo covariation in modern marine environments, in which the heaviest δ 98Mo values are found in the most intensely euxinic facies.We evaluate three different hypotheses to account for the Mo isotopic patterns of the Hushpuckney Shale. One hypothesis, seawater-freshwater mixing, is rejected owing to isotopic mass balance considerations. A second hypothesis is a local control on δ 98Mo by water-column redox cycling of Mn, with particulate Mn-oxyhydroxides adsorbing isotopically light Mo and transferring it to the sediment, a process that was most active during deposition of Zone II. The significance of this scenario is that euxinic black shales may not reliably record global seawater δ 98Mo in areas where a Mn-particulate shuttle is operative. A third hypothesis is based on rapid secular variation of the Mo isotope composition of Late Pennsylvanian global seawater. In order to account for δ 98Mo trends within the Hushpuckney Shale, seawater δ 98Mo must have varied by ~1.2‰ at a ~100-kyr timescale, which would have been possible only if the residence time of Mo in Late Pennsylvanian seawater was <100kyr. Although both the second and third hypotheses are viable based on the present limited δ 98Mo dataset, we discuss how each model might be tested through additional Mo isotope data.

KW - Black shale

KW - Cyclothem

KW - Epeiric sea

KW - Hushpuckney Shale

KW - Superestuarine circulation

KW - Swope Formation

UR - http://www.scopus.com/inward/record.url?scp=84865417589&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84865417589&partnerID=8YFLogxK

U2 - 10.1016/j.chemgeo.2012.05.013

DO - 10.1016/j.chemgeo.2012.05.013

M3 - Article

VL - 324-325

SP - 87

EP - 98

JO - Chemical Geology

JF - Chemical Geology

SN - 0009-2541

ER -