Abstract

So far we have discussed the collection and management of a large set of Tweets. It is time to put these Tweets to work to gain information about the data we have collected. This chapter focuses on two key aspects of Twitter data for data analysis: networks and text.

Original languageEnglish (US)
Title of host publicationSpringerBriefs in Computer Science
PublisherSpringer
Pages35-48
Number of pages14
Edition9781461493716
DOIs
StatePublished - Jan 1 2014

Publication series

NameSpringerBriefs in Computer Science
Number9781461493716
ISSN (Print)2191-5768
ISSN (Electronic)2191-5776

Keywords

  • Eigenvector centrality
  • Latent dirichlet allocation
  • Network construction
  • Sentiment analysis
  • Topic modeling

ASJC Scopus subject areas

  • Computer Science(all)

Cite this

Kumar, S., Morstatter, F., & Liu, H. (2014). Analyzing twitter data. In SpringerBriefs in Computer Science (9781461493716 ed., pp. 35-48). (SpringerBriefs in Computer Science; No. 9781461493716). Springer. https://doi.org/10.1007/978-1-4614-9372-3_4

Analyzing twitter data. / Kumar, Shamanth; Morstatter, Fred; Liu, Huan.

SpringerBriefs in Computer Science. 9781461493716. ed. Springer, 2014. p. 35-48 (SpringerBriefs in Computer Science; No. 9781461493716).

Research output: Chapter in Book/Report/Conference proceedingChapter

Kumar, S, Morstatter, F & Liu, H 2014, Analyzing twitter data. in SpringerBriefs in Computer Science. 9781461493716 edn, SpringerBriefs in Computer Science, no. 9781461493716, Springer, pp. 35-48. https://doi.org/10.1007/978-1-4614-9372-3_4
Kumar S, Morstatter F, Liu H. Analyzing twitter data. In SpringerBriefs in Computer Science. 9781461493716 ed. Springer. 2014. p. 35-48. (SpringerBriefs in Computer Science; 9781461493716). https://doi.org/10.1007/978-1-4614-9372-3_4
Kumar, Shamanth ; Morstatter, Fred ; Liu, Huan. / Analyzing twitter data. SpringerBriefs in Computer Science. 9781461493716. ed. Springer, 2014. pp. 35-48 (SpringerBriefs in Computer Science; 9781461493716).
@inbook{f8ca1c77e7994101911c8cd1f6161747,
title = "Analyzing twitter data",
abstract = "So far we have discussed the collection and management of a large set of Tweets. It is time to put these Tweets to work to gain information about the data we have collected. This chapter focuses on two key aspects of Twitter data for data analysis: networks and text.",
keywords = "Eigenvector centrality, Latent dirichlet allocation, Network construction, Sentiment analysis, Topic modeling",
author = "Shamanth Kumar and Fred Morstatter and Huan Liu",
year = "2014",
month = "1",
day = "1",
doi = "10.1007/978-1-4614-9372-3_4",
language = "English (US)",
series = "SpringerBriefs in Computer Science",
publisher = "Springer",
number = "9781461493716",
pages = "35--48",
booktitle = "SpringerBriefs in Computer Science",
edition = "9781461493716",

}

TY - CHAP

T1 - Analyzing twitter data

AU - Kumar, Shamanth

AU - Morstatter, Fred

AU - Liu, Huan

PY - 2014/1/1

Y1 - 2014/1/1

N2 - So far we have discussed the collection and management of a large set of Tweets. It is time to put these Tweets to work to gain information about the data we have collected. This chapter focuses on two key aspects of Twitter data for data analysis: networks and text.

AB - So far we have discussed the collection and management of a large set of Tweets. It is time to put these Tweets to work to gain information about the data we have collected. This chapter focuses on two key aspects of Twitter data for data analysis: networks and text.

KW - Eigenvector centrality

KW - Latent dirichlet allocation

KW - Network construction

KW - Sentiment analysis

KW - Topic modeling

UR - http://www.scopus.com/inward/record.url?scp=85045632073&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045632073&partnerID=8YFLogxK

U2 - 10.1007/978-1-4614-9372-3_4

DO - 10.1007/978-1-4614-9372-3_4

M3 - Chapter

T3 - SpringerBriefs in Computer Science

SP - 35

EP - 48

BT - SpringerBriefs in Computer Science

PB - Springer

ER -