Analyzing Incomplete Item Scores in Longitudinal Data by Including Item Score Information as Auxiliary Variables

Iris Eekhout, Craig K. Enders, Jos W R Twisk, Michiel R. de Boer, Henrica C W de Vet, Martijn W. Heymans

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The aim of this study is to investigate a novel method for dealing with incomplete scale scores in longitudinal data that result from missing item responses. This method includes item information as auxiliary variables, which is advantageous because it incorporates the observed item-level data while maintaining the scale scores as the focus of the analysis. These auxiliary variables do not change the analysis model, but improve missing data handling. The investigated novel method uses the item scores or some summary of a parcel of item scores as auxiliary variables, while treating the scale scores missing in a latent growth model. The performance of these methods was examined in several simulated longitudinal data conditions and analyzed through bias, mean square error, and coverage. Results show that including the item information as auxiliary variables results in rather dramatic power gains compared with analyses without auxiliary variables under varying conditions.

Original languageEnglish (US)
Pages (from-to)588-602
Number of pages15
JournalStructural Equation Modeling
Volume22
Issue number4
DOIs
StatePublished - Oct 2 2015

Keywords

  • auxiliary variables
  • full information maximum likelihood
  • longitudinal data
  • missing data
  • questionnaires
  • structural equation modeling

ASJC Scopus subject areas

  • Modeling and Simulation
  • Decision Sciences(all)
  • Economics, Econometrics and Finance(all)
  • Sociology and Political Science

Fingerprint Dive into the research topics of 'Analyzing Incomplete Item Scores in Longitudinal Data by Including Item Score Information as Auxiliary Variables'. Together they form a unique fingerprint.

Cite this