Analysis of vehicular cabins' thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models

Ali Alahmer, Mohammed Omar, Abdel Mayyas, Ala Qattawi

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

This manuscript discusses the effect of manipulating the Relative Humidity (RH) along with the Dry Bulb Temperature (DBT) on vehicular cabins' environment in terms of the overall thermal comfort and human occupants' thermal sensation. The study uses the Berkeley and the Fanger models to investigate the human comfort through analyzing the (RH) effect from three specific perspectives; firstly its effect on other environmental conditions such as the Dew Point Temperature (DPT), the Enthalpy (H), the vapor pressure (vp) and the humidity ratio (ω) in the cabin. This will be done during the summer and winter periods. Secondly, the cabin local sensation (LS) and comfort (LC) will be analyzed for different body segments mainly; the head, chest, back, hands and feet with the addition of the overall sensation (OS) and the overall comfort (OC). This will be done using a thermal manikin based on the Berkeley model. Thirdly, the human sensation will be measured by the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices during the summer and the winter periods using the Fanger model calculations. From this study and according to the Berkeley model; the RH value should be controlled and synced with the cooling process such that at the early stage (rapid transient) low RH value should be enforced; while a high RH value is needed in the steady state phase. During the start of the heating process (winter conditions), the RH value does not play a major role due to low temperature in the passenger compartment. However, at later periods until the end of the heating process, a low RH value is needed to achieve the needed comfort level. According to Fanger model, in the summer period as the RH value increases, the A/C can achieve the human comfort zone (PMV = ∓0.5) in lesser time than if the RH value is not controlled. While in the winter period, as the RH value decreases, the A/C reaches the human comfort zone faster.So, this study shows that controlling the relative humidity along with (DBT) enables the cabin to reach the comfort zone faster than the sole control of the cabin (DBT), in both the cooling and the heating processes i.e. summer and winter conditions respectively.

Original languageEnglish (US)
Pages (from-to)146-163
Number of pages18
JournalBuilding and Environment
Volume48
Issue number1
DOIs
StatePublished - Feb 2012
Externally publishedYes

Fingerprint

Humidity control
Temperature control
relative humidity
Atmospheric humidity
Values
heat pump
temperature
Industrial heating
winter
summer
heating
Hot Temperature
analysis
Temperature
cooling
Cooling
dew point
environmental factors
Thermal comfort
enthalpy

Keywords

  • Berkeley model
  • Cabin environmental conditions
  • Fanger model
  • Relative humidity
  • Thermal comfort
  • Thermal sensation

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Environmental Engineering
  • Geography, Planning and Development
  • Building and Construction

Cite this

Analysis of vehicular cabins' thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models. / Alahmer, Ali; Omar, Mohammed; Mayyas, Abdel; Qattawi, Ala.

In: Building and Environment, Vol. 48, No. 1, 02.2012, p. 146-163.

Research output: Contribution to journalArticle

@article{d61c513bb8e24a54ac67ab39f2cbe097,
title = "Analysis of vehicular cabins' thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models",
abstract = "This manuscript discusses the effect of manipulating the Relative Humidity (RH) along with the Dry Bulb Temperature (DBT) on vehicular cabins' environment in terms of the overall thermal comfort and human occupants' thermal sensation. The study uses the Berkeley and the Fanger models to investigate the human comfort through analyzing the (RH) effect from three specific perspectives; firstly its effect on other environmental conditions such as the Dew Point Temperature (DPT), the Enthalpy (H), the vapor pressure (vp) and the humidity ratio (ω) in the cabin. This will be done during the summer and winter periods. Secondly, the cabin local sensation (LS) and comfort (LC) will be analyzed for different body segments mainly; the head, chest, back, hands and feet with the addition of the overall sensation (OS) and the overall comfort (OC). This will be done using a thermal manikin based on the Berkeley model. Thirdly, the human sensation will be measured by the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices during the summer and the winter periods using the Fanger model calculations. From this study and according to the Berkeley model; the RH value should be controlled and synced with the cooling process such that at the early stage (rapid transient) low RH value should be enforced; while a high RH value is needed in the steady state phase. During the start of the heating process (winter conditions), the RH value does not play a major role due to low temperature in the passenger compartment. However, at later periods until the end of the heating process, a low RH value is needed to achieve the needed comfort level. According to Fanger model, in the summer period as the RH value increases, the A/C can achieve the human comfort zone (PMV = ∓0.5) in lesser time than if the RH value is not controlled. While in the winter period, as the RH value decreases, the A/C reaches the human comfort zone faster.So, this study shows that controlling the relative humidity along with (DBT) enables the cabin to reach the comfort zone faster than the sole control of the cabin (DBT), in both the cooling and the heating processes i.e. summer and winter conditions respectively.",
keywords = "Berkeley model, Cabin environmental conditions, Fanger model, Relative humidity, Thermal comfort, Thermal sensation",
author = "Ali Alahmer and Mohammed Omar and Abdel Mayyas and Ala Qattawi",
year = "2012",
month = "2",
doi = "10.1016/j.buildenv.2011.08.013",
language = "English (US)",
volume = "48",
pages = "146--163",
journal = "Building and Environment",
issn = "0360-1323",
publisher = "Elsevier BV",
number = "1",

}

TY - JOUR

T1 - Analysis of vehicular cabins' thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models

AU - Alahmer, Ali

AU - Omar, Mohammed

AU - Mayyas, Abdel

AU - Qattawi, Ala

PY - 2012/2

Y1 - 2012/2

N2 - This manuscript discusses the effect of manipulating the Relative Humidity (RH) along with the Dry Bulb Temperature (DBT) on vehicular cabins' environment in terms of the overall thermal comfort and human occupants' thermal sensation. The study uses the Berkeley and the Fanger models to investigate the human comfort through analyzing the (RH) effect from three specific perspectives; firstly its effect on other environmental conditions such as the Dew Point Temperature (DPT), the Enthalpy (H), the vapor pressure (vp) and the humidity ratio (ω) in the cabin. This will be done during the summer and winter periods. Secondly, the cabin local sensation (LS) and comfort (LC) will be analyzed for different body segments mainly; the head, chest, back, hands and feet with the addition of the overall sensation (OS) and the overall comfort (OC). This will be done using a thermal manikin based on the Berkeley model. Thirdly, the human sensation will be measured by the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices during the summer and the winter periods using the Fanger model calculations. From this study and according to the Berkeley model; the RH value should be controlled and synced with the cooling process such that at the early stage (rapid transient) low RH value should be enforced; while a high RH value is needed in the steady state phase. During the start of the heating process (winter conditions), the RH value does not play a major role due to low temperature in the passenger compartment. However, at later periods until the end of the heating process, a low RH value is needed to achieve the needed comfort level. According to Fanger model, in the summer period as the RH value increases, the A/C can achieve the human comfort zone (PMV = ∓0.5) in lesser time than if the RH value is not controlled. While in the winter period, as the RH value decreases, the A/C reaches the human comfort zone faster.So, this study shows that controlling the relative humidity along with (DBT) enables the cabin to reach the comfort zone faster than the sole control of the cabin (DBT), in both the cooling and the heating processes i.e. summer and winter conditions respectively.

AB - This manuscript discusses the effect of manipulating the Relative Humidity (RH) along with the Dry Bulb Temperature (DBT) on vehicular cabins' environment in terms of the overall thermal comfort and human occupants' thermal sensation. The study uses the Berkeley and the Fanger models to investigate the human comfort through analyzing the (RH) effect from three specific perspectives; firstly its effect on other environmental conditions such as the Dew Point Temperature (DPT), the Enthalpy (H), the vapor pressure (vp) and the humidity ratio (ω) in the cabin. This will be done during the summer and winter periods. Secondly, the cabin local sensation (LS) and comfort (LC) will be analyzed for different body segments mainly; the head, chest, back, hands and feet with the addition of the overall sensation (OS) and the overall comfort (OC). This will be done using a thermal manikin based on the Berkeley model. Thirdly, the human sensation will be measured by the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices during the summer and the winter periods using the Fanger model calculations. From this study and according to the Berkeley model; the RH value should be controlled and synced with the cooling process such that at the early stage (rapid transient) low RH value should be enforced; while a high RH value is needed in the steady state phase. During the start of the heating process (winter conditions), the RH value does not play a major role due to low temperature in the passenger compartment. However, at later periods until the end of the heating process, a low RH value is needed to achieve the needed comfort level. According to Fanger model, in the summer period as the RH value increases, the A/C can achieve the human comfort zone (PMV = ∓0.5) in lesser time than if the RH value is not controlled. While in the winter period, as the RH value decreases, the A/C reaches the human comfort zone faster.So, this study shows that controlling the relative humidity along with (DBT) enables the cabin to reach the comfort zone faster than the sole control of the cabin (DBT), in both the cooling and the heating processes i.e. summer and winter conditions respectively.

KW - Berkeley model

KW - Cabin environmental conditions

KW - Fanger model

KW - Relative humidity

KW - Thermal comfort

KW - Thermal sensation

UR - http://www.scopus.com/inward/record.url?scp=80053172338&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80053172338&partnerID=8YFLogxK

U2 - 10.1016/j.buildenv.2011.08.013

DO - 10.1016/j.buildenv.2011.08.013

M3 - Article

VL - 48

SP - 146

EP - 163

JO - Building and Environment

JF - Building and Environment

SN - 0360-1323

IS - 1

ER -