Abstract

We provide an overview of recent work on distributed and agile sensing algorithms and their implementation. Modern sensor systems with embedded processing can allow for distributed sensing to continuously infer intelligent information as well as for agile sensing to configure systems in order to maintain a desirable performance level. We examine distributed inference techniques for detection and estimation at the fusion center and wireless networks for the sensor systems for real time scenarios. We also study waveform-agile sensing, which includes methods for adapting the sensor transmit waveform to match the environment and to optimize the selected performance metric. We specifically concentrate on radar and underwater acoustic signal transmission environments. As we consider systems with potentially large number of sensors, we discuss the use of resource-agile implementation approaches based on multiple-core processors in order to efficiently implement the computationally intensive processing in configuring the sensors. These resource-agile approaches can be extended to also optimize sensing in distributed sensor networks.

Original languageEnglish (US)
Pages (from-to)1-14
Number of pages14
JournalDigital Signal Processing: A Review Journal
Volume39
DOIs
StatePublished - Apr 1 2015

    Fingerprint

Keywords

  • Agile sensing
  • Distributed inference
  • Distributed sensing
  • Resource-agile processing
  • Sensor networks
  • Smart grid

ASJC Scopus subject areas

  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Statistics, Probability and Uncertainty
  • Computational Theory and Mathematics
  • Electrical and Electronic Engineering
  • Artificial Intelligence
  • Applied Mathematics

Cite this