An Optimal Transportation Based Univariate Neuroimaging Index

Liang Mi, Wen Zhang, Junwei Zhang, Yonghui Fan, Dhruman Goradia, Kewei Chen, Eric M. Reiman, Xianfeng Gu, Yalin Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The alterations of brain structures and functions have been considered closely correlated to the change of cognitive performance due to neurodegenerative diseases such as Alzheimer's disease. In this paper, we introduce a variational framework to compute the optimal transformation (OT) in 3D space and propose a univariate neuroimaging index based on OT to measure such alterations. We compute the OT from each image to a template and measure the Wasserstein distance between them. By comparing the distances from all the images to the common template, we obtain a concise and informative index for each image. Our framework makes use of the Newton's method, which reduces the computational cost and enables itself to be applicable to large-scale datasets. The proposed work is a generic approach and thus may be applicable to various volumetric brain images, including structural magnetic resonance (sMR) and fluorodeoxyglucose positron emission tomography (FDG-PET) images. In the classification between Alzheimer's disease patients and healthy controls, our method achieves an accuracy of 82:30% on the Alzheimers Disease Neuroimaging Initiative (ADNI) baseline sMRI dataset and outperforms several other indices. On FDG-PET dataset, we boost the accuracy to 88:37% by leveraging pairwise Wasserstein distances. In a longitudinal study, we obtain a 5% significance with p-value = 1:13 ×105 in a t-test on FDG-PET. The results demonstrate a great potential of the proposed index for neuroimage analysis and the precision medicine research.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages182-191
Number of pages10
ISBN (Electronic)9781538610329
DOIs
StatePublished - Dec 22 2017
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: Oct 22 2017Oct 29 2017

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2017-October
ISSN (Print)1550-5499

Other

Other16th IEEE International Conference on Computer Vision, ICCV 2017
Country/TerritoryItaly
CityVenice
Period10/22/1710/29/17

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'An Optimal Transportation Based Univariate Neuroimaging Index'. Together they form a unique fingerprint.

Cite this