An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: Importance of formulation

E. E. Paoli, D. E. Kruse, J. W. Seo, H. Zhang, A. Kheirolomoom, K. D. Watson, P. Chiu, H. Stahlberg, K. W. Ferrara

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

The design of delivery vehicles that are stable in circulation but can be activated by exogenous energy sources is challenging. Our goals are to validate new imaging methods for the assessment of particle stability, to engineer stable and activatable particles and to assess accumulation of a hydrophilic model drug in an orthotopic tumor. Here, liposomes were injected into the tail vein of FVB mice containing bilateral Met-1 tumors and imaged in vivo using microPET and optical imaging techniques. Cryo-electron microscopy was applied to assess particle shape prior to injection, ex vivo fluorescence images of dissected tissues were acquired, excised tissue was further processed with a cell-digest preparation and assayed for fluorescence. We find that for a stable particle, in vivo tumor images of a hydrophilic model drug were highly correlated with PET images of the particle shell and ex vivo fluorescence images of processed tissue, R2=0.95 and R2=0.99 respectively. We demonstrate that the accumulation of a hydrophilic model drug is increased by up to 177 fold by liposomal encapsulation, as compared to accumulation of the drug at 24 hours.

Original languageEnglish (US)
Pages (from-to)13-22
Number of pages10
JournalJournal of Controlled Release
Volume143
Issue number1
DOIs
StatePublished - Apr 2010
Externally publishedYes

Keywords

  • Image-guided drug delivery
  • NIR imaging
  • Temperature-sensitive liposomes

ASJC Scopus subject areas

  • Pharmaceutical Science

Fingerprint Dive into the research topics of 'An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: Importance of formulation'. Together they form a unique fingerprint.

Cite this