An Inverse Aluminum Battery: Putting the Aluminum as the Cathode

Leigang Xue, Sen Xin, John B. Goodenough, Charles Angell

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Aluminum has long been regarded as a promising anode for energy storage because of its high energy density and low cost, but its application is hindered by the inability of cathodes to provide reversible Al3+ insertion. In contrast, we show how the use of Al as cathode enables a rechargeable high-energy battery. The battery comprises a molten sodium anolyte and a molten NaAl2Cl7 catholyte, separated by a NaSICON solid Na+ electrolyte. It is operated at 200 °C to overcome the ceramic separator kinetics and to keep sodium and NaAl2Cl7 in the molten state. Because of the simple composition and trivalence of Al, the sodium anolyte and NaAl2Cl7 catholyte together show a high energy density of 366 Whakg-1, although its voltage is only about 1.55 V and only 60% of the capacity can be realized. The high energy density, low-cost, and internal safety make this new cell chemistry applicable to the large-scale energy storage market.

Original languageEnglish (US)
Pages (from-to)1534-1538
Number of pages5
JournalACS Energy Letters
Volume2
Issue number7
DOIs
StatePublished - Jul 14 2017

ASJC Scopus subject areas

  • Chemistry (miscellaneous)
  • Energy Engineering and Power Technology
  • Materials Chemistry
  • Fuel Technology
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'An Inverse Aluminum Battery: Putting the Aluminum as the Cathode'. Together they form a unique fingerprint.

Cite this