An integrated view of complex landscapes

A big data-model integration approach to transdisciplinary science

Debra P.C. Peters, N. Dylan Burruss, Luis L. Rodriguez, D. Scott McVey, Emile H. Elias, Angela M. Pelzel-Mccluskey, Justin D. Derner, T. Scott Schrader, Jin Yao, Steven J. Pauszek, Jason Lombard, Steven R. Archer, Brandon T. Bestelmeyer, Dawn M. Browning, Colby W. Brungard, Jerry L. Hatfield, Niall P. Hanan, Jeffrey E. Herrick, Gregory S. Okin, Osvaldo Sala & 2 others Heather Savoy, Enrique Vivoni

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The Earth is a complex system comprising many interacting spatial and temporal scales. We developed a transdisciplinary data-model integration (TDMI) approach to understand, predict, and manage for these complex dynamics that focuses on spatiotemporal modeling and cross-scale interactions. Our approach employs human-centered machine-learning strategies supported by a data science integration system (DSIS). Applied to ecological problems, our approach integrates knowledge and data on (a) biological processes, (b) spatial heterogeneity in the land surface template, and (c) variability in environmental drivers using data and knowledge drawn from multiple lines of evidence (i.e., observations, experimental manipulations, analytical and numerical models, products from imagery, conceptual model reasoning, and theory). We apply this transdisciplinary approach to a suite of increasingly complex ecologically relevant problems and then discuss how information management systems will need to evolve into DSIS to allow other transdisciplinary questions to be addressed in the future.

Original languageEnglish (US)
Pages (from-to)653-669
Number of pages17
JournalBioScience
Volume68
Issue number9
DOIs
StatePublished - Jan 1 2018

Fingerprint

Systems Integration
Management Information Systems
Biological Phenomena
Imagery (Psychotherapy)
management information systems
artificial intelligence
Machine Learning

Keywords

  • Cross-scale interactions
  • Data science
  • Earth science
  • Landscape ecology
  • Machine learning

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)

Cite this

Peters, D. P. C., Burruss, N. D., Rodriguez, L. L., McVey, D. S., Elias, E. H., Pelzel-Mccluskey, A. M., ... Vivoni, E. (2018). An integrated view of complex landscapes: A big data-model integration approach to transdisciplinary science. BioScience, 68(9), 653-669. https://doi.org/10.1093/biosci/biy069

An integrated view of complex landscapes : A big data-model integration approach to transdisciplinary science. / Peters, Debra P.C.; Burruss, N. Dylan; Rodriguez, Luis L.; McVey, D. Scott; Elias, Emile H.; Pelzel-Mccluskey, Angela M.; Derner, Justin D.; Schrader, T. Scott; Yao, Jin; Pauszek, Steven J.; Lombard, Jason; Archer, Steven R.; Bestelmeyer, Brandon T.; Browning, Dawn M.; Brungard, Colby W.; Hatfield, Jerry L.; Hanan, Niall P.; Herrick, Jeffrey E.; Okin, Gregory S.; Sala, Osvaldo; Savoy, Heather; Vivoni, Enrique.

In: BioScience, Vol. 68, No. 9, 01.01.2018, p. 653-669.

Research output: Contribution to journalArticle

Peters, DPC, Burruss, ND, Rodriguez, LL, McVey, DS, Elias, EH, Pelzel-Mccluskey, AM, Derner, JD, Schrader, TS, Yao, J, Pauszek, SJ, Lombard, J, Archer, SR, Bestelmeyer, BT, Browning, DM, Brungard, CW, Hatfield, JL, Hanan, NP, Herrick, JE, Okin, GS, Sala, O, Savoy, H & Vivoni, E 2018, 'An integrated view of complex landscapes: A big data-model integration approach to transdisciplinary science', BioScience, vol. 68, no. 9, pp. 653-669. https://doi.org/10.1093/biosci/biy069
Peters DPC, Burruss ND, Rodriguez LL, McVey DS, Elias EH, Pelzel-Mccluskey AM et al. An integrated view of complex landscapes: A big data-model integration approach to transdisciplinary science. BioScience. 2018 Jan 1;68(9):653-669. https://doi.org/10.1093/biosci/biy069
Peters, Debra P.C. ; Burruss, N. Dylan ; Rodriguez, Luis L. ; McVey, D. Scott ; Elias, Emile H. ; Pelzel-Mccluskey, Angela M. ; Derner, Justin D. ; Schrader, T. Scott ; Yao, Jin ; Pauszek, Steven J. ; Lombard, Jason ; Archer, Steven R. ; Bestelmeyer, Brandon T. ; Browning, Dawn M. ; Brungard, Colby W. ; Hatfield, Jerry L. ; Hanan, Niall P. ; Herrick, Jeffrey E. ; Okin, Gregory S. ; Sala, Osvaldo ; Savoy, Heather ; Vivoni, Enrique. / An integrated view of complex landscapes : A big data-model integration approach to transdisciplinary science. In: BioScience. 2018 ; Vol. 68, No. 9. pp. 653-669.
@article{b9fe8c61f7c748609d7afc43ddaad709,
title = "An integrated view of complex landscapes: A big data-model integration approach to transdisciplinary science",
abstract = "The Earth is a complex system comprising many interacting spatial and temporal scales. We developed a transdisciplinary data-model integration (TDMI) approach to understand, predict, and manage for these complex dynamics that focuses on spatiotemporal modeling and cross-scale interactions. Our approach employs human-centered machine-learning strategies supported by a data science integration system (DSIS). Applied to ecological problems, our approach integrates knowledge and data on (a) biological processes, (b) spatial heterogeneity in the land surface template, and (c) variability in environmental drivers using data and knowledge drawn from multiple lines of evidence (i.e., observations, experimental manipulations, analytical and numerical models, products from imagery, conceptual model reasoning, and theory). We apply this transdisciplinary approach to a suite of increasingly complex ecologically relevant problems and then discuss how information management systems will need to evolve into DSIS to allow other transdisciplinary questions to be addressed in the future.",
keywords = "Cross-scale interactions, Data science, Earth science, Landscape ecology, Machine learning",
author = "Peters, {Debra P.C.} and Burruss, {N. Dylan} and Rodriguez, {Luis L.} and McVey, {D. Scott} and Elias, {Emile H.} and Pelzel-Mccluskey, {Angela M.} and Derner, {Justin D.} and Schrader, {T. Scott} and Jin Yao and Pauszek, {Steven J.} and Jason Lombard and Archer, {Steven R.} and Bestelmeyer, {Brandon T.} and Browning, {Dawn M.} and Brungard, {Colby W.} and Hatfield, {Jerry L.} and Hanan, {Niall P.} and Herrick, {Jeffrey E.} and Okin, {Gregory S.} and Osvaldo Sala and Heather Savoy and Enrique Vivoni",
year = "2018",
month = "1",
day = "1",
doi = "10.1093/biosci/biy069",
language = "English (US)",
volume = "68",
pages = "653--669",
journal = "BioScience",
issn = "0006-3568",
publisher = "American Institute of Biological Sciences",
number = "9",

}

TY - JOUR

T1 - An integrated view of complex landscapes

T2 - A big data-model integration approach to transdisciplinary science

AU - Peters, Debra P.C.

AU - Burruss, N. Dylan

AU - Rodriguez, Luis L.

AU - McVey, D. Scott

AU - Elias, Emile H.

AU - Pelzel-Mccluskey, Angela M.

AU - Derner, Justin D.

AU - Schrader, T. Scott

AU - Yao, Jin

AU - Pauszek, Steven J.

AU - Lombard, Jason

AU - Archer, Steven R.

AU - Bestelmeyer, Brandon T.

AU - Browning, Dawn M.

AU - Brungard, Colby W.

AU - Hatfield, Jerry L.

AU - Hanan, Niall P.

AU - Herrick, Jeffrey E.

AU - Okin, Gregory S.

AU - Sala, Osvaldo

AU - Savoy, Heather

AU - Vivoni, Enrique

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The Earth is a complex system comprising many interacting spatial and temporal scales. We developed a transdisciplinary data-model integration (TDMI) approach to understand, predict, and manage for these complex dynamics that focuses on spatiotemporal modeling and cross-scale interactions. Our approach employs human-centered machine-learning strategies supported by a data science integration system (DSIS). Applied to ecological problems, our approach integrates knowledge and data on (a) biological processes, (b) spatial heterogeneity in the land surface template, and (c) variability in environmental drivers using data and knowledge drawn from multiple lines of evidence (i.e., observations, experimental manipulations, analytical and numerical models, products from imagery, conceptual model reasoning, and theory). We apply this transdisciplinary approach to a suite of increasingly complex ecologically relevant problems and then discuss how information management systems will need to evolve into DSIS to allow other transdisciplinary questions to be addressed in the future.

AB - The Earth is a complex system comprising many interacting spatial and temporal scales. We developed a transdisciplinary data-model integration (TDMI) approach to understand, predict, and manage for these complex dynamics that focuses on spatiotemporal modeling and cross-scale interactions. Our approach employs human-centered machine-learning strategies supported by a data science integration system (DSIS). Applied to ecological problems, our approach integrates knowledge and data on (a) biological processes, (b) spatial heterogeneity in the land surface template, and (c) variability in environmental drivers using data and knowledge drawn from multiple lines of evidence (i.e., observations, experimental manipulations, analytical and numerical models, products from imagery, conceptual model reasoning, and theory). We apply this transdisciplinary approach to a suite of increasingly complex ecologically relevant problems and then discuss how information management systems will need to evolve into DSIS to allow other transdisciplinary questions to be addressed in the future.

KW - Cross-scale interactions

KW - Data science

KW - Earth science

KW - Landscape ecology

KW - Machine learning

UR - http://www.scopus.com/inward/record.url?scp=85055168309&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85055168309&partnerID=8YFLogxK

U2 - 10.1093/biosci/biy069

DO - 10.1093/biosci/biy069

M3 - Article

VL - 68

SP - 653

EP - 669

JO - BioScience

JF - BioScience

SN - 0006-3568

IS - 9

ER -