### Abstract

We prove an identity (equation (1) below) among SU(2) 6j and 9j symbols that generalizes the Biedenharn-Elliott sum rule. We prove the result using diagrammatic techniques (briefly reviewed here), and then provide an algebraic proof. This identity is useful for studying meson-baryon scattering in which an extra isoscalar meson is produced.

Original language | English (US) |
---|---|

Article number | 015206 |

Journal | Journal of Physics A: Mathematical and Theoretical |

Volume | 41 |

Issue number | 1 |

DOIs | |

State | Published - Jan 11 2008 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematical Physics
- Physics and Astronomy(all)
- Statistical and Nonlinear Physics
- Modeling and Simulation
- Statistics and Probability

### Cite this

*Journal of Physics A: Mathematical and Theoretical*,

*41*(1), [015206]. https://doi.org/10.1088/1751-8113/41/1/015206

**An identity on SU(2) invariants.** / Kwee, Herry J.; Lebed, Richard.

Research output: Contribution to journal › Article

*Journal of Physics A: Mathematical and Theoretical*, vol. 41, no. 1, 015206. https://doi.org/10.1088/1751-8113/41/1/015206

}

TY - JOUR

T1 - An identity on SU(2) invariants

AU - Kwee, Herry J.

AU - Lebed, Richard

PY - 2008/1/11

Y1 - 2008/1/11

N2 - We prove an identity (equation (1) below) among SU(2) 6j and 9j symbols that generalizes the Biedenharn-Elliott sum rule. We prove the result using diagrammatic techniques (briefly reviewed here), and then provide an algebraic proof. This identity is useful for studying meson-baryon scattering in which an extra isoscalar meson is produced.

AB - We prove an identity (equation (1) below) among SU(2) 6j and 9j symbols that generalizes the Biedenharn-Elliott sum rule. We prove the result using diagrammatic techniques (briefly reviewed here), and then provide an algebraic proof. This identity is useful for studying meson-baryon scattering in which an extra isoscalar meson is produced.

UR - http://www.scopus.com/inward/record.url?scp=37249059931&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=37249059931&partnerID=8YFLogxK

U2 - 10.1088/1751-8113/41/1/015206

DO - 10.1088/1751-8113/41/1/015206

M3 - Article

AN - SCOPUS:37249059931

VL - 41

JO - Journal of Physics A: Mathematical and Theoretical

JF - Journal of Physics A: Mathematical and Theoretical

SN - 1751-8113

IS - 1

M1 - 015206

ER -