TY - JOUR
T1 - An Examination of a Functional Mixed-Effects Modeling Approach to the Analysis of Longitudinal Data
AU - Fine, Kimberly L.
AU - Suk, ye Won
AU - Grimm, Kevin J.
N1 - Funding Information:
Funding: This work was supported by Grant REAL-1252463 from the National Science Foundation.
Publisher Copyright:
© 2019, © 2019 Taylor & Francis Group, LLC.
PY - 2019/7/4
Y1 - 2019/7/4
N2 - Growth curve modeling is one of the main analytical approaches to study change over time. Growth curve models are commonly estimated in the linear and nonlinear mixed-effects modeling framework in which both the mean and person-specific curves are modeled parametrically with functions of time such as the linear, quadratic, and exponential. However, when more complex nonlinear trajectories need to be estimated and researchers do not have a priori knowledge of an appropriate functional form of growth, parametric models may be too restrictive. This paper reviews functional mixed-effects models, a nonparametric extension of mixed-effects models that permit both the mean and person-specific curves to be estimated without assuming a prespecified functional form of growth. Details of the model are presented along with results from a simulation study and an empirical example. The simulation study showed functional mixed-effects models performed reasonably well under various conditions commonly associated with longitudinal panel data, such as few time points per person, irregularly spaced time points across persons, missingness, and nonlinear trajectories. The usefulness of functional mixed-effects models is illustrated by analyzing empirical data from the Early Childhood Longitudinal Study–Kindergarten Class of 1998–1999.
AB - Growth curve modeling is one of the main analytical approaches to study change over time. Growth curve models are commonly estimated in the linear and nonlinear mixed-effects modeling framework in which both the mean and person-specific curves are modeled parametrically with functions of time such as the linear, quadratic, and exponential. However, when more complex nonlinear trajectories need to be estimated and researchers do not have a priori knowledge of an appropriate functional form of growth, parametric models may be too restrictive. This paper reviews functional mixed-effects models, a nonparametric extension of mixed-effects models that permit both the mean and person-specific curves to be estimated without assuming a prespecified functional form of growth. Details of the model are presented along with results from a simulation study and an empirical example. The simulation study showed functional mixed-effects models performed reasonably well under various conditions commonly associated with longitudinal panel data, such as few time points per person, irregularly spaced time points across persons, missingness, and nonlinear trajectories. The usefulness of functional mixed-effects models is illustrated by analyzing empirical data from the Early Childhood Longitudinal Study–Kindergarten Class of 1998–1999.
KW - Functional mixed-effects model
KW - longitudinal data analysis
KW - nonlinear growth curve modeling
UR - http://www.scopus.com/inward/record.url?scp=85063143220&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063143220&partnerID=8YFLogxK
U2 - 10.1080/00273171.2018.1520626
DO - 10.1080/00273171.2018.1520626
M3 - Article
C2 - 30896253
AN - SCOPUS:85063143220
SN - 0027-3171
VL - 54
SP - 475
EP - 491
JO - Multivariate Behavioral Research
JF - Multivariate Behavioral Research
IS - 4
ER -