An easy subexponential bound for online chain partitioning

Bartłomiej Bosek, Tomasz Krawczyk, Henry Kierstead, Grzegorz Matecki, Matthew E. Smith

Research output: Contribution to journalArticle

Abstract

Bosek and Krawczyk exhibited an online algorithm for partitioning an online poset of width w into w141gw chains. We improve this to w6.51g w+7 with a simpler and shorter proof by combining the work of Bosek & Krawczyk with work of Kierstead & Smith on First-Fit chain partitioning of ladder-free posets. We also provide examples illustrating the limits of our approach.

Original languageEnglish (US)
Article number#P2.28
JournalElectronic Journal of Combinatorics
Volume25
Issue number2
StatePublished - May 25 2018

Fingerprint

Ladders
Poset
Partitioning
Online Algorithms

Keywords

  • First-fit
  • Ladder
  • Online chain partition
  • Partially ordered set
  • Poset
  • Regular poset

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Computational Theory and Mathematics

Cite this

Bosek, B., Krawczyk, T., Kierstead, H., Matecki, G., & Smith, M. E. (2018). An easy subexponential bound for online chain partitioning. Electronic Journal of Combinatorics, 25(2), [#P2.28].

An easy subexponential bound for online chain partitioning. / Bosek, Bartłomiej; Krawczyk, Tomasz; Kierstead, Henry; Matecki, Grzegorz; Smith, Matthew E.

In: Electronic Journal of Combinatorics, Vol. 25, No. 2, #P2.28, 25.05.2018.

Research output: Contribution to journalArticle

Bosek, B, Krawczyk, T, Kierstead, H, Matecki, G & Smith, ME 2018, 'An easy subexponential bound for online chain partitioning', Electronic Journal of Combinatorics, vol. 25, no. 2, #P2.28.
Bosek B, Krawczyk T, Kierstead H, Matecki G, Smith ME. An easy subexponential bound for online chain partitioning. Electronic Journal of Combinatorics. 2018 May 25;25(2). #P2.28.
Bosek, Bartłomiej ; Krawczyk, Tomasz ; Kierstead, Henry ; Matecki, Grzegorz ; Smith, Matthew E. / An easy subexponential bound for online chain partitioning. In: Electronic Journal of Combinatorics. 2018 ; Vol. 25, No. 2.
@article{0c4cf4c525fe4c549ff6ee241896f795,
title = "An easy subexponential bound for online chain partitioning",
abstract = "Bosek and Krawczyk exhibited an online algorithm for partitioning an online poset of width w into w141gw chains. We improve this to w6.51g w+7 with a simpler and shorter proof by combining the work of Bosek & Krawczyk with work of Kierstead & Smith on First-Fit chain partitioning of ladder-free posets. We also provide examples illustrating the limits of our approach.",
keywords = "First-fit, Ladder, Online chain partition, Partially ordered set, Poset, Regular poset",
author = "Bartłomiej Bosek and Tomasz Krawczyk and Henry Kierstead and Grzegorz Matecki and Smith, {Matthew E.}",
year = "2018",
month = "5",
day = "25",
language = "English (US)",
volume = "25",
journal = "Electronic Journal of Combinatorics",
issn = "1077-8926",
publisher = "Electronic Journal of Combinatorics",
number = "2",

}

TY - JOUR

T1 - An easy subexponential bound for online chain partitioning

AU - Bosek, Bartłomiej

AU - Krawczyk, Tomasz

AU - Kierstead, Henry

AU - Matecki, Grzegorz

AU - Smith, Matthew E.

PY - 2018/5/25

Y1 - 2018/5/25

N2 - Bosek and Krawczyk exhibited an online algorithm for partitioning an online poset of width w into w141gw chains. We improve this to w6.51g w+7 with a simpler and shorter proof by combining the work of Bosek & Krawczyk with work of Kierstead & Smith on First-Fit chain partitioning of ladder-free posets. We also provide examples illustrating the limits of our approach.

AB - Bosek and Krawczyk exhibited an online algorithm for partitioning an online poset of width w into w141gw chains. We improve this to w6.51g w+7 with a simpler and shorter proof by combining the work of Bosek & Krawczyk with work of Kierstead & Smith on First-Fit chain partitioning of ladder-free posets. We also provide examples illustrating the limits of our approach.

KW - First-fit

KW - Ladder

KW - Online chain partition

KW - Partially ordered set

KW - Poset

KW - Regular poset

UR - http://www.scopus.com/inward/record.url?scp=85047840251&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047840251&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85047840251

VL - 25

JO - Electronic Journal of Combinatorics

JF - Electronic Journal of Combinatorics

SN - 1077-8926

IS - 2

M1 - #P2.28

ER -