An algorithm for solving the Navier-Stokes equations with shear-periodic boundary conditions and its application to homogeneously sheared turbulence

M. Houssem Kasbaoui, Ravi G. Patel, Donald L. Koch, Olivier Desjardins

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Simulations of homogeneously sheared turbulence (HST) are conducted until a universal self-similar state is established at the long non-dimensional time γ t = 20, where γ is the shear rate. The simulations are enabled by a new robust and discretely conservative algorithm. The method solves the governing equations in physical space using the so-called shear-periodic boundary conditions. Convection by the mean homogeneous shear flow is treated implicitly in a split step approach. An iterative Crank-Nicolson time integrator is chosen for robustness and stability. The numerical strategy captures without distortion the Kelvin modes, rotating waves that are fundamental to homogeneously sheared flows and are at the core of rapid distortion theory. Three direct numerical simulations of HST with the initial Taylor scale Reynolds number Reλ0 = 29 and shear numbers of S 0 = λ0 q2/∈= 3, 15 and 27 are performed on a 2048 × 1024 × 1024 grid. Here, ∈ is the dissipation rate and 1=2q2 is the turbulent kinetic energy. The long integration time considered allows the establishment of a self-similar state observed in experiments but often absent from simulations conducted over shorter times. The asymptotic state appears to be universal with a long time production to dissipation rate P/∈ ∼ 1:5 and shear number S ∼ 10 in agreement with experiments. While the small scales exhibit strong anisotropy increasing with initial shear number, the skewness of the transverse velocity derivative decreases with increasing Reynolds number.

Original languageEnglish (US)
Pages (from-to)687-716
Number of pages30
Journaljournal of fluid mechanics
Volume833
DOIs
StatePublished - Dec 25 2017
Externally publishedYes

Keywords

  • computational methods
  • homogeneous turbulence
  • turbulent flows

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'An algorithm for solving the Navier-Stokes equations with shear-periodic boundary conditions and its application to homogeneously sheared turbulence'. Together they form a unique fingerprint.

Cite this