Amorphous alumina nanoparticles: Structure, surface energy, and thermodynamic phase stability

Amir H. Tavakoli, Pardha Saradhi Maram, Scarlett J. Widgeon, Jorgen Rufner, Klaus Van Benthem, Sergey Ushakov, Sabyasachi Sen, Alexandra Navrotsky

Research output: Contribution to journalArticlepeer-review

133 Scopus citations

Abstract

To provide a complete picture of the energy landscape of Al 2O3 at the nanoscale, we directed this study toward understanding the energetics of amorphous alumina (a-Al2O 3). a-Al2O3 nanoparticles were obtained by condensation from gas phase generated through laser evaporation of α-Al2O3 targets in pure oxygen at25 Pa. As-deposited nanopowders were heat-treated at different temperatures up to 600 C to provide powders with surface areas of 670-340 m2/g. The structure of the samples was characterized by powder X-ray diffraction, transmission electron microscopy, and solid-state nuclear magnetic resonance spectroscopy. The results indicate that the microstructure consists of aggregated 3-5 nm nanoparticles that remain amorphous to temperatures as high as 600 C. The structure consists of a network of AlO4, AlO5, and AlO6 polyhedra, with AlO5 being the most abundant species. The presence of water molecules on the surfaces was confirmed by mass spectrometry of the gases evolved on heating the samples under vacuum. A combination of BET surface-area measurements, water adsorption calorimetry, and high-temperature oxide melt solution calorimetry was employed for thermodynamic analysis. By linear fit of the measured excess enthalpy of the nanoparticles as a function of surface area, the surface energy of a-Al2O3 was determined to be 0.97 ± 0.04 J/m2. We conclude that the lower surface energy of a-Al2O3 compared with crystalline polymorphs γ- and α-Al2O3 makes this phase the most energetically stable phase at surface areas greater than 370 m2/g.

Original languageEnglish (US)
Pages (from-to)17123-17130
Number of pages8
JournalJournal of Physical Chemistry C
Volume117
Issue number33
DOIs
StatePublished - Aug 22 2013
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Amorphous alumina nanoparticles: Structure, surface energy, and thermodynamic phase stability'. Together they form a unique fingerprint.

Cite this