Alternating synchronizability of complex clustered networks with regular local structure

Liang Huang, Ying-Cheng Lai, Robert A. Gatenby

Research output: Contribution to journalArticle

20 Scopus citations

Abstract

Small network distance and homogeneous degree distribution have been found to be critical to efficient network synchronization. In this paper, we investigate the synchronizability of clustered networks with regular subnetworks and report a counterintuitive phenomenon: As the density of intracluster links is increased, the network exhibits strong and weak synchronizability in an alternating manner. A theory based on analyzing the eigenvalues and eigenvectors of the coupling matrix is provided to explain this phenomenon. The relevance of the network model to tissue organization for intercellular communication in biological systems is discussed. An implication is that, in order to achieve synchronization, local coupling density in the network needs to be tuned properly.

Original languageEnglish (US)
Article number016103
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume77
Issue number1
DOIs
StatePublished - Jan 14 2008

    Fingerprint

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Cite this