Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: Effect of particle size

Wen Zhang, Madhavi Kalive, David Capco, Yongsheng Chen

Research output: Contribution to journalArticle

45 Scopus citations

Abstract

The increasing applications of engineered nanomaterials nowadays have elevated the potential of human exposure through various routes including inhalation, skin penetration and digestion. To date there is scarce information on a quantitative description of the interactions between nanoparticles (NPs) and cell surfaces and the detrimental effects from the exposure. The purpose of this work was to study in vitro exposure of Caco-2 cells to hematite (α-Fe2O3) NPs and to determine the particle size effects on the adsorption behaviors. Cellular impairment was also investigated and compared. Hematite NPs were synthesized as part of this study with a discrete size distribution and uniform morphology examined by dynamic light scattering (DLS) and confirmed by transmission electron microscopy (TEM). Caco-2 cells were cultured as a model epithelium to mirror human intestinal cells and used to evaluate the impacts of the exposure to NPs by measuring transepithelial electrical resistance (TEER). Cell surface disruption, localization and translocation of NPs through the cells were analyzed with immunocytochemical staining and confocal microscopy. Results showed that hematite NPs had mean diameters of 26, 53, 76 and 98 nm and were positively charged with minor aggregation in the buffer solution. Adsorption of the four sizes of NPs on cells reached equilibrium within approximately 5 min but adsorption kinetics were found to be size-dependent. The adsorption rates expressed as mg m -2min-1 were greater for large NPs (76 and 98 nm) than those for small NPs (26 and 53 nm). However, adsorption rates, expressed in units of m-2 min-1, were much greater for small NPs than large ones. After the adsorption equilibrium was reached, the adsorbed mass of NPs on a unit area of cells was calculated and showed no significant size dependence. Longer exposure time (>3 h) induced adverse cellular effects as indicated by the drop in TEER compared to the control cells without the exposure to NPs. NPs initially triggered a dynamic reorganization and detachment of microvilli structures on Caco-2 cell surfaces. Following this impact, the drop in TEER occurred more significantly, particularly for the exposure to 26 nm NPs, which was consistent with the observations with confocal microscopy that the junctions were more severely disrupted by 26 nm NPs than other sizes. In conclusion, this paper demonstrates the interactions at the ultrastructural level from initial surface adsorption of NPs upon cells, to the subsequent microvilli reorganization, membrane penetration and the disruption of adherens junction and provides the fundamental information on size effects on NP behavior which is often poorly addressed for in vitro cytotoxicity studies of NPs.

Original languageEnglish (US)
Article number355103
JournalNanotechnology
Volume21
Issue number35
DOIs
StatePublished - Mar 9 2010

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: Effect of particle size'. Together they form a unique fingerprint.

  • Cite this