Adsorption of CO2 and CH4 on a magnesium-based metal organic framework

Zongbi Bao, Liang Yu, Qilong Ren, Xiuyang Lu, Shuguang Deng

Research output: Contribution to journalArticlepeer-review

334 Scopus citations

Abstract

A magnesium-based metal organic framework (MOF), also known as Mg-MOF-74, was successfully synthesized, characterized, and evaluated for adsorption equilibria and kinetics of CO2 and CH4. The Mg-MOF-74 crystals were characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and nitrogen adsorption for pore textural properties. Adsorption equilibrium and kinetics of CO2 and CH4 on the Mg-MOF-74 adsorbent were measured in a volumetric adsorption unit at 278, 298, and 318K and pressures up to 1bar. It was found that the Mg-MOF-74 adsorbent prepared in this work has a median pore width of 10.2Å, a BET specific surface area of 1174m2/g, CO2 and CH4 adsorption capacities of 8.61mmolg-1 (37.8wt.%) and 1.05mmolg-1 (1.7wt.%), respectively, at 298K and 1bar. Both CO2 and CH4 adsorption capacities are significantly higher than those of zeolite 13X under similar conditions. The pressure-dependent equilibrium selectivity of CO2 over CH4 (qCO2/qCH4) in the Mg-MOF-74 adsorbent showed a trend similar to that of zeolite 13X and the intrinsic selectivity of Mg-MOF-74 at zero adsorption loading is 283 at 298K. The initial heats of adsorption of CO2 and CH4 on the Mg-MOF-74 adsorbent were found to be 73.0 and 18.5kJmol-1, respectively. The adsorption kinetic measurements suggest that the diffusivities of CO2 and CH4 on Mg-MOF-74 were comparable to those on zeolite 13X. CH4 showed relatively faster adsorption kinetics than CO2 in both adsorbents. The diffusion time constants of CO2 and CH4 in the Mg-MOF-74 adsorbent at 298K were estimated to be 8.11×10-3 and 4.05×10-2s-1, respectively, showing a modest kinetic selectivity of about 5 for the separation CH4 from CO2.

Original languageEnglish (US)
Pages (from-to)549-556
Number of pages8
JournalJournal of Colloid And Interface Science
Volume353
Issue number2
DOIs
StatePublished - Jan 15 2011
Externally publishedYes

Keywords

  • Adsorption
  • Carbon dioxide
  • Equilibrium
  • Kinetics
  • Methane
  • Mg-MOF-74
  • Selectivity
  • Separation
  • Zeolite 13X

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Adsorption of CO<sub>2</sub> and CH<sub>4</sub> on a magnesium-based metal organic framework'. Together they form a unique fingerprint.

Cite this