Adsorption and decomposition pathways of vinyl phosphonic and ethanoic acids on the Al(111) surface: A density functional analysis

Jun Zhong, James Adams

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

Density functional theory is employed to investigate optimal adsorption geometries and binding energies of vinyl phosphonic and ethanoic acids on the Al(111) surface. Tribridged, bi-bridged, and unidentate coordinations for adsorbates are examined to determine optimal binding sites on the surface. An analysis of charge density of states of oxygen involved in reacting with aluminum ions reveals changes in atomic bonding. For these acid molecules, the favorable decomposition pathways lead to fragments of vinyl and alkyl chains bonding to the Al(111) surface with phosphorus and carbon ions. The final optimal decomposition geometries and binding energies for various decomposition stages are also discussed.

Original languageEnglish (US)
Pages (from-to)7366-7375
Number of pages10
JournalJournal of Physical Chemistry C
Volume111
Issue number20
DOIs
StatePublished - May 24 2007

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Adsorption and decomposition pathways of vinyl phosphonic and ethanoic acids on the Al(111) surface: A density functional analysis'. Together they form a unique fingerprint.

  • Cite this