Adaptive Video Transmission Schemes Using MPEG-7 Motion Intensity Descriptors

Research output: Patent

Abstract

Multimedia content distributed over existing communication networks are increasing in rapid pace. The traffic characterization of such information is greedy and requires special processing in order to be transmitted over exiting unreliable networks. Therefore, error resilience techniques have been proposed. These error resilience techniques affect the compression efficiency. The visual content varies rapidly during video transmission, which in turn influences the traffic characterization. MPEG-7 descriptors are used to represent the underlying media content. However, MPEG-7 descriptors have not been used in analyzing the performance of the video traffic. We propose a video transmission system that uses the motion intensity descriptors to ensure robust video transmission. A novel motion activity extraction technique is proposed by adopting a neural network approach. Our proposed extraction approach correlates well with human perception of the motion intensity of the video sequence. In order to emphasize the superiority of the proposed transmission system, we develop a selective packet dropping scheme that can be applied in case of network congestion.
Original languageEnglish (US)
StatePublished - Jan 24 2005

Fingerprint

Telecommunication networks
Neural networks
Processing

Cite this

@misc{299f85c2f3bd413aa08109633127593b,
title = "Adaptive Video Transmission Schemes Using MPEG-7 Motion Intensity Descriptors",
abstract = "Multimedia content distributed over existing communication networks are increasing in rapid pace. The traffic characterization of such information is greedy and requires special processing in order to be transmitted over exiting unreliable networks. Therefore, error resilience techniques have been proposed. These error resilience techniques affect the compression efficiency. The visual content varies rapidly during video transmission, which in turn influences the traffic characterization. MPEG-7 descriptors are used to represent the underlying media content. However, MPEG-7 descriptors have not been used in analyzing the performance of the video traffic. We propose a video transmission system that uses the motion intensity descriptors to ensure robust video transmission. A novel motion activity extraction technique is proposed by adopting a neural network approach. Our proposed extraction approach correlates well with human perception of the motion intensity of the video sequence. In order to emphasize the superiority of the proposed transmission system, we develop a selective packet dropping scheme that can be applied in case of network congestion.",
author = "Sethuraman Panchanathan and Martin Reisslein",
year = "2005",
month = "1",
day = "24",
language = "English (US)",
type = "Patent",

}

TY - PAT

T1 - Adaptive Video Transmission Schemes Using MPEG-7 Motion Intensity Descriptors

AU - Panchanathan, Sethuraman

AU - Reisslein, Martin

PY - 2005/1/24

Y1 - 2005/1/24

N2 - Multimedia content distributed over existing communication networks are increasing in rapid pace. The traffic characterization of such information is greedy and requires special processing in order to be transmitted over exiting unreliable networks. Therefore, error resilience techniques have been proposed. These error resilience techniques affect the compression efficiency. The visual content varies rapidly during video transmission, which in turn influences the traffic characterization. MPEG-7 descriptors are used to represent the underlying media content. However, MPEG-7 descriptors have not been used in analyzing the performance of the video traffic. We propose a video transmission system that uses the motion intensity descriptors to ensure robust video transmission. A novel motion activity extraction technique is proposed by adopting a neural network approach. Our proposed extraction approach correlates well with human perception of the motion intensity of the video sequence. In order to emphasize the superiority of the proposed transmission system, we develop a selective packet dropping scheme that can be applied in case of network congestion.

AB - Multimedia content distributed over existing communication networks are increasing in rapid pace. The traffic characterization of such information is greedy and requires special processing in order to be transmitted over exiting unreliable networks. Therefore, error resilience techniques have been proposed. These error resilience techniques affect the compression efficiency. The visual content varies rapidly during video transmission, which in turn influences the traffic characterization. MPEG-7 descriptors are used to represent the underlying media content. However, MPEG-7 descriptors have not been used in analyzing the performance of the video traffic. We propose a video transmission system that uses the motion intensity descriptors to ensure robust video transmission. A novel motion activity extraction technique is proposed by adopting a neural network approach. Our proposed extraction approach correlates well with human perception of the motion intensity of the video sequence. In order to emphasize the superiority of the proposed transmission system, we develop a selective packet dropping scheme that can be applied in case of network congestion.

M3 - Patent

ER -