Adaptive Teaching of Temporal Logic Formulas to Preference-based Learners

Zhe Xu, Yuxin Chen, Ufuk Topcu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Machine teaching is an algorithmic framework for teaching a target hypothesis via a sequence of examples or demonstrations. We investigate machine teaching for temporal logic formulas—a novel and expressive hypothesis class amenable to time-related task specifications. In the context of teaching temporal logic formulas, an exhaustive search even for a myopic solution takes exponential time (with respect to the time span of the task). We propose an efficient approach for teaching parametric linear temporal logic formulas. Concretely, we derive a necessary condition for the minimal time length of a demonstration to eliminate a set of hypotheses. Utilizing this condition, we propose an efficient myopic teaching algorithm by solving a sequence of integer programming problems. We further show that, under two notions of teaching complexity, the proposed algorithm has near-optimal performance. We evaluate our algorithm extensively under different classes of learners (i.e., learners with different preferences over hypotheses) and interaction protocols (e.g., non-adaptive and adaptive). Our results demonstrate the effectiveness of the proposed algorithm in teaching temporal logic formulas; in particular, we show that there are significant gains of teaching efficacy when the teacher adapts to feedback of the learner, or adapts to a (non-myopic) oracle.

Original languageEnglish (US)
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages5061-5068
Number of pages8
ISBN (Electronic)9781713835974
StatePublished - 2021
Externally publishedYes
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: Feb 2 2021Feb 9 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume6A

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/2/212/9/21

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Adaptive Teaching of Temporal Logic Formulas to Preference-based Learners'. Together they form a unique fingerprint.

Cite this