Adaptive multi-paddock grazing management's influence on soil food web community structure for: increasing pasture forage production, soil organic carbon, and reducing soil respiration rates in southeastern USA ranches

David C. Johnson, Richard Teague, Steven Apfelbaum, Ry Thompson, Peter Byck

Research output: Contribution to journalArticlepeer-review

Abstract

Background. Measurement of two grazing management's influence on pasture productivity, soil food web structure, soil organic carbon and soil microbial respiration efficiency was conducted on five southeastern US, across-the-fence ranch pairs to compare adaptive multi-paddock grazing (AMP) management, using short grazing events with planned, adaptive recovery periods, to conventional grazing (CG) management, with continuous grazing at low stock density. Methodology. A point-in-time experimental field analysis was conducted to compare five AMP or CG ranch pairs to better understand the influence of grazing management on (a) standing crop biomass productivity; (b) soil food web community population, structure and functionality; (c) soil organic carbon accrual; and d) soil-C (CO2) respiration kinetics. Results. AMP grazing systems outperformed CG systems by generating: (a) 92.68 g m−2 more standing crop biomass (SCB), promoting 46% higher pasture photosynthetic capacity (Two sample Mann-Whitney; Z = 6.1836; no DF in MW; p = 6.26 × 10−10; Effect size = 0.35) (b) a strong positive linear relationship of SCB with fungal biomass (R = 0.9915; F(1,3) = 175.35; p = 0.015); fungal to bacterial (F:B) biomass ratio (R = 0.9616; F(1,3) = 36.75; p = 0.009) and a soil food web proxy (R = 0.9616; F(1,3) = 36.75; p = 0.009) and a concurrent very strong inverse relationship with bacteria biomass (R = −0.946; F(1,3) = 25.56; p = 0.015); (c) significant predator/prey interactions with an inverse relationship with bacterial population biomass (R = −0.946; F(1,3) = 25.56; p = 0.015) and a positive relationship with total protozoa enumeration (R = 0.9826; F(1,3) = 83.68; p = 0.003) when compared to SCB; (d) a 19.52% reduction in soil C (CO2) respiration rates (Two sample t-test; T = −2.3581; DF = 52.3541; p = 0.0221; Effect size = 0.59); and (e) a 20.6% increase in soil organic carbon (SOC) in the top 10 cm of soil profile (Two sample Mann-Whitney; Z = 2.6507; no DF in MW; p = 0.008; Effect size = 0.24). Rancher conversion to AMP grazing strategies would appear to regenerate soil food web population, structure, diversity and biological functionality helping to improve: carbon flow into plant biomass, buildup of soil carbon, predator/prey nutrient cycling and soil microbial respiration efficiency while offering improved climate resilience and a strategy to increase the capture and storage of atmospheric CO2 in soils of the world's rangeland.

Original languageEnglish (US)
Article numbere13750
JournalPeerJ
Volume10
DOIs
StatePublished - Jul 2022

Keywords

  • AMP grazing
  • Carbon sequestration
  • Soil fertility & health
  • Soil food web

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint

Dive into the research topics of 'Adaptive multi-paddock grazing management's influence on soil food web community structure for: increasing pasture forage production, soil organic carbon, and reducing soil respiration rates in southeastern USA ranches'. Together they form a unique fingerprint.

Cite this