Abstract

When tracking multiple targets, radar measurements from weak targets are often masked by the ambiguity function (AF) sidelobes of the measurements from stronger targets. This results in deteriorated tracking performance and lost tracks. In this study, we consider the design of configurable waveforms whose AF sidelobes can be positioned to unmask weak targets. Specifically, we construct multicarrier phase-coded (MCPC) waveforms based on Björck constant amplitude zero-autocorrelation (CAZAC) sequences. The MCPC CAZAC waveforms exhibit wide regions in their AF surface without sidelobes and allow for selective positioning of sidelobes. We apply these waveforms in the context of a target tracker by selecting waveform parameters that minimize the expected tracking error. We show that this is accomplished by selecting the position of AF sidelobes to unmask weak targets. The target tracker is based on an independent partitions likelihood particle filter that is capable of processing the high-resolution measurements resulting from the Björck CAZAC sequences and tracks a fixed and known number of targets. Using simulations, we demonstrate the improvement in tracking performance when we adaptively select the MCPC CAZAC waveforms over tracking using non-adaptive waveform configurations or single-carrier phase-coded CAZAC waveforms.

Original languageEnglish (US)
Article number180
JournalEurasip Journal on Advances in Signal Processing
Volume2012
Issue number1
DOIs
StatePublished - 2012

Fingerprint

Target tracking
Autocorrelation
Radar measurement
Processing

ASJC Scopus subject areas

  • Hardware and Architecture
  • Signal Processing
  • Electrical and Electronic Engineering

Cite this

@article{7b0343f7d952476f9b96610bde83008d,
title = "Adaptive highly localized waveform design for multiple target tracking",
abstract = "When tracking multiple targets, radar measurements from weak targets are often masked by the ambiguity function (AF) sidelobes of the measurements from stronger targets. This results in deteriorated tracking performance and lost tracks. In this study, we consider the design of configurable waveforms whose AF sidelobes can be positioned to unmask weak targets. Specifically, we construct multicarrier phase-coded (MCPC) waveforms based on Bj{\"o}rck constant amplitude zero-autocorrelation (CAZAC) sequences. The MCPC CAZAC waveforms exhibit wide regions in their AF surface without sidelobes and allow for selective positioning of sidelobes. We apply these waveforms in the context of a target tracker by selecting waveform parameters that minimize the expected tracking error. We show that this is accomplished by selecting the position of AF sidelobes to unmask weak targets. The target tracker is based on an independent partitions likelihood particle filter that is capable of processing the high-resolution measurements resulting from the Bj{\"o}rck CAZAC sequences and tracks a fixed and known number of targets. Using simulations, we demonstrate the improvement in tracking performance when we adaptively select the MCPC CAZAC waveforms over tracking using non-adaptive waveform configurations or single-carrier phase-coded CAZAC waveforms.",
author = "Ioannis Kyriakides and Darryl Morrell and Antonia Papandreou-Suppappola",
year = "2012",
doi = "10.1186/1687-6180-2012-180",
language = "English (US)",
volume = "2012",
journal = "Eurasip Journal on Advances in Signal Processing",
issn = "1687-6172",
publisher = "Springer Publishing Company",
number = "1",

}

TY - JOUR

T1 - Adaptive highly localized waveform design for multiple target tracking

AU - Kyriakides, Ioannis

AU - Morrell, Darryl

AU - Papandreou-Suppappola, Antonia

PY - 2012

Y1 - 2012

N2 - When tracking multiple targets, radar measurements from weak targets are often masked by the ambiguity function (AF) sidelobes of the measurements from stronger targets. This results in deteriorated tracking performance and lost tracks. In this study, we consider the design of configurable waveforms whose AF sidelobes can be positioned to unmask weak targets. Specifically, we construct multicarrier phase-coded (MCPC) waveforms based on Björck constant amplitude zero-autocorrelation (CAZAC) sequences. The MCPC CAZAC waveforms exhibit wide regions in their AF surface without sidelobes and allow for selective positioning of sidelobes. We apply these waveforms in the context of a target tracker by selecting waveform parameters that minimize the expected tracking error. We show that this is accomplished by selecting the position of AF sidelobes to unmask weak targets. The target tracker is based on an independent partitions likelihood particle filter that is capable of processing the high-resolution measurements resulting from the Björck CAZAC sequences and tracks a fixed and known number of targets. Using simulations, we demonstrate the improvement in tracking performance when we adaptively select the MCPC CAZAC waveforms over tracking using non-adaptive waveform configurations or single-carrier phase-coded CAZAC waveforms.

AB - When tracking multiple targets, radar measurements from weak targets are often masked by the ambiguity function (AF) sidelobes of the measurements from stronger targets. This results in deteriorated tracking performance and lost tracks. In this study, we consider the design of configurable waveforms whose AF sidelobes can be positioned to unmask weak targets. Specifically, we construct multicarrier phase-coded (MCPC) waveforms based on Björck constant amplitude zero-autocorrelation (CAZAC) sequences. The MCPC CAZAC waveforms exhibit wide regions in their AF surface without sidelobes and allow for selective positioning of sidelobes. We apply these waveforms in the context of a target tracker by selecting waveform parameters that minimize the expected tracking error. We show that this is accomplished by selecting the position of AF sidelobes to unmask weak targets. The target tracker is based on an independent partitions likelihood particle filter that is capable of processing the high-resolution measurements resulting from the Björck CAZAC sequences and tracks a fixed and known number of targets. Using simulations, we demonstrate the improvement in tracking performance when we adaptively select the MCPC CAZAC waveforms over tracking using non-adaptive waveform configurations or single-carrier phase-coded CAZAC waveforms.

UR - http://www.scopus.com/inward/record.url?scp=84887066507&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84887066507&partnerID=8YFLogxK

U2 - 10.1186/1687-6180-2012-180

DO - 10.1186/1687-6180-2012-180

M3 - Article

AN - SCOPUS:84887066507

VL - 2012

JO - Eurasip Journal on Advances in Signal Processing

JF - Eurasip Journal on Advances in Signal Processing

SN - 1687-6172

IS - 1

M1 - 180

ER -