Adaptive control of powered transfemoral prostheses based on adaptive dynamic programming

Yue Wen, Ming Liu, Jennie Si, He Helen Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

In this study, we developed and tested a novel adaptive controller for powered transfemoral prostheses. Adaptive dynamic programming (ADP) was implemented within the prosthesis control to complement the existing finite state impedance control (FS-IC) in a prototypic active-transfemoral prosthesis (ATP). The ADP controller interacts with the human user-prosthesis system, observes the prosthesis user's dynamic states during walking, and learns to personalize user performance properties via online adaptation to meet the individual user's objectives. The new ADP controller was preliminarily tested on one able-bodied subject walking on a treadmill. The test objective was for the user to approach normative knee kinematics by tuning the FS-IC impedance parameters via ADP. The results showed the ADP was able to adjust the prosthesis controller to generate the desired normative knee kinematics within 10 minutes. In the meantime, the FS-IC impedance parameters converged at the end of the adaptive tuning procedure while maintaining the desired human-prosthesis performance. This study demonstrated the feasibility of ADP for adaptive control of a powered lower limb prosthesis. Future research efforts will address several important issues in order to validate the system on amputees. To achieve this goal, human user-centered performance objective functions will be developed, tested, and used in this adaptive controller design.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5071-5074
Number of pages4
Volume2016-October
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
CountryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Adaptive control of powered transfemoral prostheses based on adaptive dynamic programming'. Together they form a unique fingerprint.

  • Cite this

    Wen, Y., Liu, M., Si, J., & Huang, H. H. (2016). Adaptive control of powered transfemoral prostheses based on adaptive dynamic programming. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 (Vol. 2016-October, pp. 5071-5074). [7591867] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2016.7591867