Abstract

Automated recognition of facial expressions is an important problem in computer vision applications. Due to the vagueness in class definitions, expression recognition is often conceived as a fuzzy label problem. Annotating a data point in such a problem involves significant manual effort. Active learning techniques are effective in reducing human labeling effort to induce a classification model as they automatically select the salient and exemplar instances from vast amounts of unlabeled data. Further, to address the high redundancy in data such as image or video sequences as well as to account for the presence of multiple labeling agents, there have been recent attempts towards a batch mode form of active learning where a batch of data points is selected simultaneously from an unlabeled set. In this paper, we propose a novel optimization-based batch mode active learning technique for fuzzy label classification problems. To the best of our knowledge, this is the first effort to develop such a scheme primarily intended for the fuzzy label context. The proposed algorithm is computationally simple, easy to implement and has provable performance bounds. Our results on facial expression datasets corroborate the efficacy of the framework in reducing human annotation effort in real world recognition applications involving fuzzy labels.

Original languageEnglish (US)
Title of host publicationProceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011
Pages241-246
Number of pages6
DOIs
StatePublished - Dec 1 2011
Event10th International Conference on Machine Learning and Applications, ICMLA 2011 - Honolulu, HI, United States
Duration: Dec 18 2011Dec 21 2011

Publication series

NameProceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011
Volume1

Other

Other10th International Conference on Machine Learning and Applications, ICMLA 2011
CountryUnited States
CityHonolulu, HI
Period12/18/1112/21/11

ASJC Scopus subject areas

  • Computer Science Applications
  • Human-Computer Interaction

Fingerprint Dive into the research topics of 'Active batch selection for fuzzy classification in facial expression recognition'. Together they form a unique fingerprint.

Cite this