Accelerated testing of module-level power electronics for long-term reliability

Jack Flicker, Govindasamy Tamizhmani, Mathan Kumar Moorthy, Ramanathan Thiagarajan, Raja Ayyanar

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

This work has applied a suite of long-term-reliability accelerated tests to a variety of module-level power electronics (MLPE) devices (such as microinverters and optimizers) from five different manufacturers. This dataset is one of the first (only the paper by Parker et al. entitled 'Dominant factors affecting reliability of alternating current photovoltaic modules,' in Proc. 42nd IEEE Photovoltaic Spec. Conf. , 2015, is reported for reliability testing in the literature), as well as the largest, experimental sets in public literature, both in the sample size (five manufacturers including both dc/dc and dc/ac units and 20 units for each test) and the number of experiments (six different experimental test conditions) for MLPE devices. The accelerated stress tests (thermal cycling test per IEC 61215 profile, damp heat test per IEC 61215 profile, and static temperature tests at 100 and 125 °C) were performed under powered and unpowered conditions. The first independent long-term experimental data regarding damp heat and grid transient testing, as well as the longest term (>9 month) testing of MLPE units reported in the literature for thermal cycling and high-temperature operating life, are included in these experiments. Additionally, this work is the first to show in situ power measurements, as well as periodic efficiency measurements over a series of experimental tests, demonstrating whether certain tests result in long-term degradation or immediate catastrophic failures. The result of this testing highlights the performance of MLPE units under the application of several accelerated environmental stressors.

Original languageEnglish (US)
Article number7740890
Pages (from-to)259-267
Number of pages9
JournalIEEE Journal of Photovoltaics
Volume7
Issue number1
DOIs
StatePublished - Jan 2017

Keywords

  • Accelerated life test
  • microinverter (MI)
  • module-level power electronics (MLPE)
  • optimizer
  • photovoltaics (PV)
  • reliability

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Accelerated testing of module-level power electronics for long-term reliability'. Together they form a unique fingerprint.

Cite this