TY - JOUR
T1 - Abundance, distribution, and mutation rates of homopolymeric nucleotide runs in the genome of Caenorhabditis elegans
AU - Denver, Dee R.
AU - Morris, Krystalynne
AU - Kewalramani, Avinash
AU - Harris, Katherine E.
AU - Chow, Amy
AU - Estes, Suzanne
AU - Lynch, Michael
AU - Thomas, W. Kelley
PY - 2004/5
Y1 - 2004/5
N2 - Homopolymeric nucleotide runs, also called mononucleotide microsatellites, are a ubiquitous, dominant, and mutagenic feature of eukaryotic genomes. A clear understanding of the forces that shape patterns of homopolymer evolution, however, is lacking. We provide a focused investigation of the abundance, chromosomal distribution, and mutation spectra of the four strand-specific homopolymer types (A, T, G, C) ≥8 bp in the genome of Caenorhabditis elegans. A and T homopolymers vastly outnumber G and C HPs, and the run-length distributions of A and T homopolymers differ significantly from G and C homopolymers. A scanning window analysis of homopolymer chromosomal distribution reveals distinct clusters of homopolymer density in autosome arms that are regions of high recombination in C. elegans. Dramatic biases are detected among closely spaced homopolymers; for instance, we observe 994 A homopolymers immediately followed by a T homopolymer (5′ to 3′) and only 8 instances of T homopolymers directly followed by an A homopolymer. Empirical homopolymer mutation assays in a set of C. elegans mutation-accumulation lines reveal an ∼20-fold higher mutation rate for G and C homopolymers compared to A and T homopolymers. Nuclear A and T homopolymers are also found to mutate ∼100-fold more slowly than mitochondrial A and T homopolymers. This integrative approach yields a total nuclear genome-wide homopolymer mutation rate estimate of ∼1.6 mutations per genome per generation.
AB - Homopolymeric nucleotide runs, also called mononucleotide microsatellites, are a ubiquitous, dominant, and mutagenic feature of eukaryotic genomes. A clear understanding of the forces that shape patterns of homopolymer evolution, however, is lacking. We provide a focused investigation of the abundance, chromosomal distribution, and mutation spectra of the four strand-specific homopolymer types (A, T, G, C) ≥8 bp in the genome of Caenorhabditis elegans. A and T homopolymers vastly outnumber G and C HPs, and the run-length distributions of A and T homopolymers differ significantly from G and C homopolymers. A scanning window analysis of homopolymer chromosomal distribution reveals distinct clusters of homopolymer density in autosome arms that are regions of high recombination in C. elegans. Dramatic biases are detected among closely spaced homopolymers; for instance, we observe 994 A homopolymers immediately followed by a T homopolymer (5′ to 3′) and only 8 instances of T homopolymers directly followed by an A homopolymer. Empirical homopolymer mutation assays in a set of C. elegans mutation-accumulation lines reveal an ∼20-fold higher mutation rate for G and C homopolymers compared to A and T homopolymers. Nuclear A and T homopolymers are also found to mutate ∼100-fold more slowly than mitochondrial A and T homopolymers. This integrative approach yields a total nuclear genome-wide homopolymer mutation rate estimate of ∼1.6 mutations per genome per generation.
KW - Caenorhabditis elegans
KW - Genome
KW - Homopolymer
KW - Microsatellite
KW - Mutation
UR - http://www.scopus.com/inward/record.url?scp=1942499339&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1942499339&partnerID=8YFLogxK
U2 - 10.1007/s00239-004-2580-4
DO - 10.1007/s00239-004-2580-4
M3 - Article
C2 - 15170261
AN - SCOPUS:1942499339
SN - 0022-2844
VL - 58
SP - 584
EP - 595
JO - Journal of Molecular Evolution
JF - Journal of Molecular Evolution
IS - 5
ER -