A Y-Shaped Three-Arm Structure for Probing Bivalent Interactions between Protein Receptor-Ligand Using AFM and SPR

Subhadip Senapati, Sudipta Biswas, Saikat Manna, Robert Ros, Stuart Lindsay, Peiming Zhang

Research output: Contribution to journalArticle

1 Scopus citations


The goal of this research was to develop linkage chemistry for the study of bivalent interactions between a receptor and its ligand using atomic force microscopy (AFM) and surface plasmon resonance (SPR). We conceived a three-arm structure composed of flexible chains connected to a large rigid core with orthogonal functional groups at their ends for formation and attachment (or immobilization) of bivalent ligands. To demonstrate the principle, we chose the well-known biotin-streptavidin interaction as a model system. On the basis of a crystal structure of the biotin-streptavidin complex, we designed and synthesized a bisbiotin ligand to have a Y shape with two biotin motifs on its arms for binding and a functional group on its stem for immobilization or attachment, referred to as y-bisbiotin. First, we found that the y-bisbiotin ligand stabilized the streptavidin more than its monobiotin counterpart did in solution, which indicates that the bivalent interaction was synergistic. The y-bisbiotin was attached to AFM tips through a click reaction for the force measurement experiments, which showed that unbinding the bisbiotin from streptavidin needed twice the force of unbinding a monobiotin. For the SPR study, we added a ω-thiolated alkyl chain to y-bisbiotin for its incorporation into a monolayer. The SPR data indicated that the streptavidin dissociated from a mixed monolayer bearing y-bisbiotin much slower than from the one bearing monobiotin. This work demonstrates unique chemistry for the study of bivalent interactions using AFM and SPR.

Original languageEnglish (US)
Pages (from-to)6930-6940
Number of pages11
Issue number23
StatePublished - Jun 12 2018


ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Cite this