TY - JOUR
T1 - A wearable sensor system to measure step-based gait parameters for parkinson’s disease rehabilitation
AU - Muthukrishnan, Niveditha
AU - Abbas, James J.
AU - Krishnamurthi, Narayanan
N1 - Funding Information:
Funding: The study and preparation of the manuscript was supported by funds from the National Institutes of Health (1R21NR017484) and a grant funded by the Center for Innovation in Healthy & Resilient Aging at Arizona State University (PG11326).
PY - 2020/11/2
Y1 - 2020/11/2
N2 - Spatiotemporal parameters of gait serve as an important biomarker to monitor gait impairments as well as to develop rehabilitation systems. In this work, we developed a computationally-efficient algorithm (SDI-Step) that uses segmented double integration to calculate step length and step time from wearable inertial measurement units (IMUs) and assessed its ability to reliably and accurately measure spatiotemporal gait parameters. Two data sets that included simultaneous measurements from wearable sensors and from a laboratory-based system were used in the assessment. The first data set utilized IMU sensors and a GAITRite mat in our laboratory to monitor gait in fifteen participants: 9 young adults (YA1) (5 females, 4 males, age 23.6 ± 1 years), and 6 people with Parkinson’s disease (PD) (3 females, 3 males, age 72.3 ± 6.6 years). The second data set, which was accessed from a publicly-available repository, utilized IMU sensors and an optoelectronic system to monitor gait in five young adults (YA2) (2 females, 3 males, age 30.5 ± 3.5 years). In order to provide a complete representation of validity, we used multiple statistical analyses with overlapping metrics. Gait parameters such as step time and step length were calculated and the agreement between the two measurement systems for each gait parameter was assessed using Passing–Bablok (PB) regression analysis and calculation of the Intra-class Correlation Coefficient (ICC (2,1)) with 95% confidence intervals for a single measure, absolute-agreement, 2-way mixed-effects model. In addition, Bland–Altman (BA) plots were used to visually inspect the measurement agreement. The values of the PB regression slope were close to 1 and intercept close to 0 for both step time and step length measures. The results obtained using ICC (2,1) for step length showed a moderate to excellent agreement for YA (between 0.81 and 0.95) and excellent agreement for PD (between 0.93 and 0.98), while both YA and PD had an excellent agreement in step time ICCs (>0.9). Finally, examining the BA plots showed that the measurement difference was within the limits of agreement (LoA) with a 95% probability. Results from this preliminary study indicate that using the SDI-Step algorithm to process signals from wearable IMUs provides measurements that are in close agreement with widely-used laboratory-based systems and can be considered as a valid tool for measuring spatiotemporal gait parameters.
AB - Spatiotemporal parameters of gait serve as an important biomarker to monitor gait impairments as well as to develop rehabilitation systems. In this work, we developed a computationally-efficient algorithm (SDI-Step) that uses segmented double integration to calculate step length and step time from wearable inertial measurement units (IMUs) and assessed its ability to reliably and accurately measure spatiotemporal gait parameters. Two data sets that included simultaneous measurements from wearable sensors and from a laboratory-based system were used in the assessment. The first data set utilized IMU sensors and a GAITRite mat in our laboratory to monitor gait in fifteen participants: 9 young adults (YA1) (5 females, 4 males, age 23.6 ± 1 years), and 6 people with Parkinson’s disease (PD) (3 females, 3 males, age 72.3 ± 6.6 years). The second data set, which was accessed from a publicly-available repository, utilized IMU sensors and an optoelectronic system to monitor gait in five young adults (YA2) (2 females, 3 males, age 30.5 ± 3.5 years). In order to provide a complete representation of validity, we used multiple statistical analyses with overlapping metrics. Gait parameters such as step time and step length were calculated and the agreement between the two measurement systems for each gait parameter was assessed using Passing–Bablok (PB) regression analysis and calculation of the Intra-class Correlation Coefficient (ICC (2,1)) with 95% confidence intervals for a single measure, absolute-agreement, 2-way mixed-effects model. In addition, Bland–Altman (BA) plots were used to visually inspect the measurement agreement. The values of the PB regression slope were close to 1 and intercept close to 0 for both step time and step length measures. The results obtained using ICC (2,1) for step length showed a moderate to excellent agreement for YA (between 0.81 and 0.95) and excellent agreement for PD (between 0.93 and 0.98), while both YA and PD had an excellent agreement in step time ICCs (>0.9). Finally, examining the BA plots showed that the measurement difference was within the limits of agreement (LoA) with a 95% probability. Results from this preliminary study indicate that using the SDI-Step algorithm to process signals from wearable IMUs provides measurements that are in close agreement with widely-used laboratory-based systems and can be considered as a valid tool for measuring spatiotemporal gait parameters.
KW - Gait event detection
KW - Inertial measurement units
KW - Spatiotemporal gait
KW - Step length
KW - Step time
UR - http://www.scopus.com/inward/record.url?scp=85096037210&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096037210&partnerID=8YFLogxK
U2 - 10.3390/s20226417
DO - 10.3390/s20226417
M3 - Article
C2 - 33182658
AN - SCOPUS:85096037210
VL - 20
SP - 1
EP - 13
JO - Sensors (Switzerland)
JF - Sensors (Switzerland)
SN - 1424-8220
IS - 22
M1 - 6417
ER -