Abstract

Though recent progress in resistive random access memory (ReRAM)-based accelerator designs for convolutional neural networks (CNN) achieve superior timing performance and area-efficiency improvements over CMOS-based accelerators, they have high energy consumptions due to low inter-layer data reuse. In this work, we propose a multi-tile ReRAM accelerator for supporting multiple CNN topologies, where each tile processes one or more layers in a pipelined fashion. Building upon the fact that a tile with large receptive field can be built with a stack of smaller (3×3) filters, we design every tile with 9 processing elements that operate in a systolic fashion. Use of systolic data flow design maximizes input feature map reuse and minimizes interconnection cost. We show that 1-bit weight and 4-bit activation achieves good accuracy for both AlexNet and VGGNet, and design our ReRAM based accelerator to support this configuration. System-level simulation results on 32 nm node show that the proposed architecture for AlexNet with stacking small filters can achieve computation efficiency of 8.42 TOPs/s/mm 2 , energy efficiency of 4.08 TOPs/s/W and storage efficiency of 0.18 MB/mm 2 for inference computation of one image in the CIFAR-100 dataset.

Original languageEnglish (US)
Title of host publicationProceedings of the IEEE Workshop on Signal Processing Systems, SiPS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages211-216
Number of pages6
ISBN (Electronic)9781538663189
DOIs
StatePublished - Dec 31 2018
Event2018 IEEE Workshop on Signal Processing Systems, SiPS 2018 - Cape Town, South Africa
Duration: Oct 21 2018Oct 24 2018

Publication series

NameIEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation
Volume2018-October
ISSN (Print)1520-6130

Conference

Conference2018 IEEE Workshop on Signal Processing Systems, SiPS 2018
Country/TerritorySouth Africa
CityCape Town
Period10/21/1810/24/18

Keywords

  • CNN
  • ReRAM
  • accelerator
  • systolic

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Signal Processing
  • Applied Mathematics
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'A Versatile ReRAM-based Accelerator for Convolutional Neural Networks'. Together they form a unique fingerprint.

Cite this