A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects

Komi Messan, Yun Kang

Research output: Research - peer-reviewArticle

  • 1 Citations

Abstract

We propose and study a two patch Rosenzweig-MacArthur prey-predator model with immobile prey and predator using two dispersal strategies. The first dispersal strategy is driven by the prey-predator interaction strength, and the second dispersal is prompted by the local population density of predators which is referred as the passive dispersal. The dispersal strategies using by predator are measured by the proportion of the predator population using the passive dispersal strategy which is a parameter ranging from 0 to 1. We focus on how the dispersal strategies and the related dispersal strengths affect population dynamics of prey and predator, hence generate different spatial dynamical patterns in heterogeneous environment. We provide local and global dynamics of the proposed model. Based on our analytical and numerical analysis, interesting findings could be summarized as follow: (1) If there is no prey in one patch, then the large value of dispersal strength and the large predator population using the passive dispersal in the other patch could drive predator extinct at least locally. However, the intermediate predator population using the passive dispersal could lead to multiple interior equilibria and potentially stabilize the dynamics; (2) The large dispersal strength in one patch may stabilize the boundary equilibrium and lead to the extinction of predator in two patches locally when predators use two dispersal strategies; (3) For symmetric patches (i.e., all the life history parameters are the same except the dispersal strengths), the large predator population using the passive dispersal can generate multiple interior attractors; (4) The dispersal strategies can stabilize the system, or destabilize the system through generating multiple interior equilibria that lead to multiple attractors; and (5) The large predator population using the passive dispersal could lead to no interior equilibrium but both prey and predator can coexist through fluctuating dynamics for almost all initial conditions.

LanguageEnglish (US)
Pages947-976
Number of pages30
JournalDiscrete and Continuous Dynamical Systems - Series B
Volume22
Issue number3
DOIs
StatePublished - May 1 2017

Fingerprint

Prey-predator Model
Foraging
Predator
Patch
Strategy
Population dynamics
Numerical analysis
Prey
Interior
Attractor
Prey-predator
Heterogeneous Environment
Global Dynamics
Population Dynamics
Extinction
Numerical Analysis
Proportion
Initial conditions
Interaction
Model

Keywords

  • Dispersal strategies
  • Non-random foraging movements
  • Passive dispersal
  • Predation strength
  • The Rosenzweig-MacArthur prey-predator model

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

Cite this

A two patch prey-predator model with multiple foraging strategies in predator : Applications to insects. / Messan, Komi; Kang, Yun.

In: Discrete and Continuous Dynamical Systems - Series B, Vol. 22, No. 3, 01.05.2017, p. 947-976.

Research output: Research - peer-reviewArticle

@article{fa24a955237847b9946565f2e653661c,
title = "A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects",
abstract = "We propose and study a two patch Rosenzweig-MacArthur prey-predator model with immobile prey and predator using two dispersal strategies. The first dispersal strategy is driven by the prey-predator interaction strength, and the second dispersal is prompted by the local population density of predators which is referred as the passive dispersal. The dispersal strategies using by predator are measured by the proportion of the predator population using the passive dispersal strategy which is a parameter ranging from 0 to 1. We focus on how the dispersal strategies and the related dispersal strengths affect population dynamics of prey and predator, hence generate different spatial dynamical patterns in heterogeneous environment. We provide local and global dynamics of the proposed model. Based on our analytical and numerical analysis, interesting findings could be summarized as follow: (1) If there is no prey in one patch, then the large value of dispersal strength and the large predator population using the passive dispersal in the other patch could drive predator extinct at least locally. However, the intermediate predator population using the passive dispersal could lead to multiple interior equilibria and potentially stabilize the dynamics; (2) The large dispersal strength in one patch may stabilize the boundary equilibrium and lead to the extinction of predator in two patches locally when predators use two dispersal strategies; (3) For symmetric patches (i.e., all the life history parameters are the same except the dispersal strengths), the large predator population using the passive dispersal can generate multiple interior attractors; (4) The dispersal strategies can stabilize the system, or destabilize the system through generating multiple interior equilibria that lead to multiple attractors; and (5) The large predator population using the passive dispersal could lead to no interior equilibrium but both prey and predator can coexist through fluctuating dynamics for almost all initial conditions.",
keywords = "Dispersal strategies, Non-random foraging movements, Passive dispersal, Predation strength, The Rosenzweig-MacArthur prey-predator model",
author = "Komi Messan and Yun Kang",
year = "2017",
month = "5",
doi = "10.3934/dcdsb.2017048",
volume = "22",
pages = "947--976",
journal = "Discrete and Continuous Dynamical Systems - Series B",
issn = "1531-3492",
publisher = "Southwest Missouri State University",
number = "3",

}

TY - JOUR

T1 - A two patch prey-predator model with multiple foraging strategies in predator

T2 - Discrete and Continuous Dynamical Systems - Series B

AU - Messan,Komi

AU - Kang,Yun

PY - 2017/5/1

Y1 - 2017/5/1

N2 - We propose and study a two patch Rosenzweig-MacArthur prey-predator model with immobile prey and predator using two dispersal strategies. The first dispersal strategy is driven by the prey-predator interaction strength, and the second dispersal is prompted by the local population density of predators which is referred as the passive dispersal. The dispersal strategies using by predator are measured by the proportion of the predator population using the passive dispersal strategy which is a parameter ranging from 0 to 1. We focus on how the dispersal strategies and the related dispersal strengths affect population dynamics of prey and predator, hence generate different spatial dynamical patterns in heterogeneous environment. We provide local and global dynamics of the proposed model. Based on our analytical and numerical analysis, interesting findings could be summarized as follow: (1) If there is no prey in one patch, then the large value of dispersal strength and the large predator population using the passive dispersal in the other patch could drive predator extinct at least locally. However, the intermediate predator population using the passive dispersal could lead to multiple interior equilibria and potentially stabilize the dynamics; (2) The large dispersal strength in one patch may stabilize the boundary equilibrium and lead to the extinction of predator in two patches locally when predators use two dispersal strategies; (3) For symmetric patches (i.e., all the life history parameters are the same except the dispersal strengths), the large predator population using the passive dispersal can generate multiple interior attractors; (4) The dispersal strategies can stabilize the system, or destabilize the system through generating multiple interior equilibria that lead to multiple attractors; and (5) The large predator population using the passive dispersal could lead to no interior equilibrium but both prey and predator can coexist through fluctuating dynamics for almost all initial conditions.

AB - We propose and study a two patch Rosenzweig-MacArthur prey-predator model with immobile prey and predator using two dispersal strategies. The first dispersal strategy is driven by the prey-predator interaction strength, and the second dispersal is prompted by the local population density of predators which is referred as the passive dispersal. The dispersal strategies using by predator are measured by the proportion of the predator population using the passive dispersal strategy which is a parameter ranging from 0 to 1. We focus on how the dispersal strategies and the related dispersal strengths affect population dynamics of prey and predator, hence generate different spatial dynamical patterns in heterogeneous environment. We provide local and global dynamics of the proposed model. Based on our analytical and numerical analysis, interesting findings could be summarized as follow: (1) If there is no prey in one patch, then the large value of dispersal strength and the large predator population using the passive dispersal in the other patch could drive predator extinct at least locally. However, the intermediate predator population using the passive dispersal could lead to multiple interior equilibria and potentially stabilize the dynamics; (2) The large dispersal strength in one patch may stabilize the boundary equilibrium and lead to the extinction of predator in two patches locally when predators use two dispersal strategies; (3) For symmetric patches (i.e., all the life history parameters are the same except the dispersal strengths), the large predator population using the passive dispersal can generate multiple interior attractors; (4) The dispersal strategies can stabilize the system, or destabilize the system through generating multiple interior equilibria that lead to multiple attractors; and (5) The large predator population using the passive dispersal could lead to no interior equilibrium but both prey and predator can coexist through fluctuating dynamics for almost all initial conditions.

KW - Dispersal strategies

KW - Non-random foraging movements

KW - Passive dispersal

KW - Predation strength

KW - The Rosenzweig-MacArthur prey-predator model

UR - http://www.scopus.com/inward/record.url?scp=85014313084&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85014313084&partnerID=8YFLogxK

U2 - 10.3934/dcdsb.2017048

DO - 10.3934/dcdsb.2017048

M3 - Article

VL - 22

SP - 947

EP - 976

JO - Discrete and Continuous Dynamical Systems - Series B

JF - Discrete and Continuous Dynamical Systems - Series B

SN - 1531-3492

IS - 3

ER -