A Three-Arm Scaffold Carrying Affinity Molecules for Multiplex Recognition Imaging by Atomic Force Microscopy: The Synthesis, Attachment to Silicon Tips, and Detection of Proteins

Saikat Manna, Subhadip Senapati, Stuart Lindsay, Peiming Zhang

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

We have developed a multiplex imaging method for detection of proteins using atomic force microscopy (AFM), which we call multiplex recognition imaging (mRI). AFM has been harnessed to identify protein using a tip functionalized with an affinity molecule at a single molecule level. However, many events in biochemistry require identification of colocated factors simultaneously, and this is not possible with only one type of affinity molecule on an AFM tip. To enable AFM detection of multiple analytes, we designed a recognition head made from conjugating two different affinity molecules to a three-arm linker. When it is attached to an AFM tip, the recognition head would allow the affinity molecules to function in concert. In the present study, we synthesized two recognition heads: one was composed of two nucleic acid aptamers, and the other one composed of an aptamer and a cyclic peptide. They were attached to AFM tips through a catalyst-free click reaction. Our imaging results show that each affinity unit in the recognition head can recognize its respective cognate in an AFM scanning process independently and specifically. The AFM method was sensitive, only requiring 2 to 3 μL of protein solution with a concentration of ∼2 ng/mL for the detection with our current setup. When a mixed sample was deposited on a surface, the ratio of proteins could be determined by counting numbers of the analytes. Thus, this mRI approach has the potential to be used as a label-free system for detection of low-abundance protein biomarkers.

Original languageEnglish (US)
Pages (from-to)7415-7423
Number of pages9
JournalJournal of the American Chemical Society
Volume137
Issue number23
DOIs
StatePublished - Jun 17 2015

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'A Three-Arm Scaffold Carrying Affinity Molecules for Multiplex Recognition Imaging by Atomic Force Microscopy: The Synthesis, Attachment to Silicon Tips, and Detection of Proteins'. Together they form a unique fingerprint.

Cite this