The Cu–SiO 2 based programmable metallization cell (PMC) is a promising alternative to the Ag-chalcogenide glass PMC because of its low power consumption and CMOS-compatibility. Understanding its total ionizing dose (TID) response helps in assessing the reliability of this technology in ionizing radiation environments and benefits its expansion in the space electronics market. In this paper, the impacts of TID on the switching characteristics of Cu–SiO 2 PMC are investigated for the first time. The devices were step irradiated with 60Co gamma-rays to a maximum dose of 7.1 Mrad ( SiO2 ). The results show that gamma-ray irradiation has a negligible impact on the virgin-state and on-state resistance of Cu–SiO 2 PMCs. The off-state resistance slightly decreases after the first 1.5 Mrad( SiO2) of exposure, but this reduction saturates after higher levels of TID. Other switching characteristics such as the set voltage, multilevel switching capability and endurance were also studied, all of which did not show observable changes after gamma-ray radiation. The immunity to ionizing radiation is attributed to the suppression of the photo-doping process.

Original languageEnglish (US)
JournalIEEE Transactions on Nuclear Science
StateAccepted/In press - Nov 9 2015

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Nuclear Energy and Engineering
  • Nuclear and High Energy Physics


Dive into the research topics of 'A Study of Gamma-Ray Exposure of Cu–SiO <sub>2</sub> Programmable Metallization Cells'. Together they form a unique fingerprint.

Cite this